
Automated Key Management for
End-To-End Encrypted Email Communication

Thomas Maier
Technical University of Munich (TUM)

Email: ga85how@mytum.de

Abstract—Studies show that problems appear in the scope
of end-to-end encrypted mailing. Key exchange procedures are
hard to understand and difficult to use for end users. This
paper proposes protocols enabling an automated key exchange
by using the existing mail ecosystem. End users put trust in their
mail provider regarding the storage of their emails already. The
proposed protocols leverage this trust relationship by seeing the
provider as a trusted third party. The proposed key exchange
sequence reuses authentication mechanisms that are already
implemented and used within the Simple Mail Transfer Protocol.
Therefore the mail provider takes care of user authentication
in order to make uploaded public keys publicly available.
Previously designed protocols do not offer the possibility of
a fully-automated exchange of authenticated public keys. The
hereby defined protocols ensure the key authenticity by using
the existing trust relationship. Therefor this paper introduces
two protocols – the Key Publication Protocol for submitting
public keys and the Key Retrieval Protocol for requesting
public keys. Both protocols are designed highly scalable since
each of them makes use of two emails. The protocols may
be implemented in a way to be usable since they enable a
fully-automated key exchange sequence. Furthermore a Prove
of Concept implementation within the paper points out that the
protocols are deployable in a simple way. Therefore reaching an
higher adoption rate and low expenditures are favored.

I. INTRODUCTION

Studies show that it is hard for end users to use end-to-end
email encryption securely [1]–[3]. One of the major usability
issues is the inability to execute manual tasks like sending,
retrieving and verifying public keys. Therefore automating the
key exchange may lead to better usability. That leads to the
following research question:

How is it possible to automatically exchange authenticated
public keys in order to make end-to-end encrypted mailing

more usable?

This paper presents two novel protocols as a solution to
this problem. They assist the end user by automating the
key publication and key retrieval workflows. The proposed
automation may contribute to the simplification of today’s
secure email encryption.

First related approaches of open source and commercialized
projects and products are introduced in section II. Afterwards
the difficulties of existing solutions are analyzed in order
to identify problems (section III). Then the protocol design
is getting developed in section IV based on the beforehand
explained problems and design goals. Section V presents an
exemplary implementation. This Prove of Concept is used to

evaluate the proposed protocols. The penultimate section VI
explains further issues to be discussed in the future. Finally,
section VII summarizes the results and provides conclusions
regarding the designed protocols.

II. RELATED WORK

Within this section existing solutions are introduced, that
concentrate on making end-to-end encryption more usable or
secure. The following categories are chosen to classify the
variety of different solutions. Those deviate strongly regarding
implemented features and addressed problems. On the one
hand the approaches concentrate on practical implementations.
On the other hand theoretical concepts were designed. There
are solutions provided in a public manner but there are still
specific implementations offered by individual vendors only.

A. Transparency Frameworks

Projects like Certificate Transparency (CT) [4], CONIKS
[5] and Key Transparency [6] emerged with the goal to
improve the recognition of forged certificates or public keys.
CT makes it possible to monitor issued certificates using a
public log in order to detect suspicious activities of Certificate
Authorities. The authors of CONIKS add additional objectives
like the provision of privacy-preserving key directories and the
capability to monitor logs efficiently. KT follows the objectives
of CT and adjusts this concept to apply it on plain public keys
instead of whole certificates.

One of the disadvantages of the previously mentioned mech-
anisms is to verify the validity of the user-key-binding after it
has been published. The user-key-binding is only considered
retroactively via monitoring. Contrary to the solution we
propose, these projects try to ensure the consistency of the
cryptographic keys over time.

B. Manual Key Verification

Another option to verify the key authenticity is the manual
confirmation over an additional secure channel. This opportu-
nity is given by the OpenPGP system implicitly for instance.
In this case, the key fingerprint can be verified by confirming
it via the mentioned additional channel.

A project called pretty Easy Privacy (pEp or p≡p) uses a
similar approach with manual verification [7]. Also OpenPGP
is used but with well pronounceable Trustwords. Those Trust-
words are generated out of the public key.



The drawback of manual key verification is that it is not
possible to fully automate those solutions. Thereby the key
exchange workflow forces users to verify the key authenticity
out of band.

C. Web of Trust

With OpenPGP some standardizations and common prac-
tices, like signatures of public keys were developed. The
idea builds upon key verification by independent entities to
establish trust. The standard provides two options in order to
accomplish the verification. People have to either (1) check
the user-key-binding off-the-record (e.g., personally) or (2) by
putting confidence in key signatures. End users generally do
not accept both options because they decrease the grade of
usability [1]–[3].

D. Key Servers

Public key servers offer the service to publish and retrieve
keys. Authenticating users regarding the uploaded key is not
possible as key servers are not necessarily hosted by a specific
provider. The HTTP KeyServer Protocol (HKP) is intended for
spreading public keys but has no mechanism for authentication
[8], [9].

The GnuPG Web Key Directory (WKD) solves this problem
by implementing an HTTP server as an additional service
within the mail provider’s infrastructure [10]. This HTTP
server holds the users’ keys. The authenticated submission of
those keys is under discussion during this paper as the project
website and a RFC draft state [11], [12]. One idea is to use the
same HTTP server. This demands the service to authenticate
the user, meaning the HTTP server needs to know the user’s
credentials as well. This leads to a lower degree of security
because credentials are accessible by an additional service.
Another suggested approach is to use email in order to submit
the public key. The project did not release a final specification
about the key publication process.

E. Mail Provider Approaches

Some providers try to support their users in end-to-end
encryption. Most of them use isolated applications in order
to cover their own users only.

1) Public Key Upload and Retrieval: During research we
found three common ways – the first is uploading keys via a
web interface [13]–[15]. The providers ensure authenticity by
checking the user’s account credentials via a web application.
All found providers implemented their own solution for this
feature. The main drawback is that those proprietary imple-
mentations hinder a widespread adoption of the used concepts.

A second option providers offer, is making use of their
own or other public key servers [13], [16], [17]. A Ger-
man project called Vertrauenswürdige Verteilung von Ver-
schlüsselungsschlüsseln (VVV) developed a solution to pub-
lish keys via provider’s key servers [18]. Users’ are allowed
to upload their key after authentication via their account cre-
dentials. Thus providers offer additional services to the Simple
Mail Transfer Protocol (SMTP). Hereby security implications

arise because of the fact that users’ credentials are handled in
places additional to the SMTP server.

A third solution is using the Domain Name System (DNS)
[13]. The OPENPGPKEY DNS Resource Record is used to
publish OpenPGP public keys. Domain Name System Se-
curity Extensions (DNSSEC) are necessary to avoid forged
responses. There are still several disadvantages regarding
DNSSEC [19]. For instance Extension Mechanisms for DNS
(EDNS) [20] are needed because a higher packet size is
required for DNSSEC responses. Those amplified packets lead
to a higher risk of DNS reflection attacks and therefore Denial
of Service [21].

2) Approaches to Assist in Encryption: Some providers
support their users in fetching public keys from provider’s
services and internal/external key servers [22]. Those providers
offer their own web interface for that (e.g., mailbox.org Guard
[23]) or make use of browser addons (like Mailvelope [13],
[24]–[26]). All found providers assist in encryption via web
interfaces only. Hence it is mandatory for users to use specific
web interfaces instead of using another Mail User Agent
(MUA).

3) Service Discovery: Only one way was found to discover
key servers or other key services hosted by providers (e.g.,
mailbox.org). For such it is necessary to fetch the DNS
Resource Record SRV with the Domain prefix _hkps._tcp.
to get the domain of the provider’s HKP key server. As
mentioned, it is necessary to verify this record with DNSSEC.
The usage of DNSSEC leads to drawbacks as mentioned in
section II-E1.

4) Deployment Distribution: As mentioned all providers
develop isolated applications. Therefore it is not possible to
reuse most of the existing solutions. Despite of that some
providers have made some parts of their solutions open source
(e.g., Roundcube integration [27] or the ProtonMail Web
Client [28]).

F. Client-side Approach

There is only one client-side approach with no respect to
desktop mail clients. Mailpile is a web-mail client, that tries
to simplify end-to-end encryption. It assists the user with
retrieving new public keys. The software uses the Trust on
First Use concept (TOFU) [29], i.e., they put confidence in
the assumption that the initially retrieved key is the right one.
Mailpile does not provide any native feature to authenticate
the user-key-binding.

G. Guidelines

After looking into practical implementations the autocrypt
guidelines [30] need to be introduced. The goal of the project
is to replace cleartext with end-to-end encrypted e-mail. The
published specification only protects against passive attackers
until now. Therefore they cannot be used for practical use yet.

III. ANALYSIS

The last section describes existing approaches with their
drawbacks. Those issues are analyzed within this section.



The central problem to be solved is that end-to-end encryp-
tion is difficult for end users [1]–[3]. The lack of knowledge
leads to severe usability issues and security problems. One of
the major impediments is the key exchange between end users.
To go more into detail this is about the inability to accomplish
(1) sending and receiving public keys and (2) verifying keys
and signatures.

A solution to this issue is to automate the key exchange
completely with two workflows in order to accomplish the
exchange of a public key Kpub between the MUA of Alice
and the MUA of Bob.

• The Key Publication Workflow describes how Alice is
able to upload Kpub after authenticating herself towards
her mail provider.

• The Key Retrieval Workflow requires Bob to find the key-
holding server (used by Alice) first of all. Afterwards Bob
has to be able to request Kpub from that server without
any authentication.

Both workflows need to ensure integrity and authenticity of
the exchanged key Kpub.

The following sections come up with several problems
(indicated by P and an identifier). Every single one of them
has been derived from solutions described within the related
work section II. Design goals are introduced (indicated by G
and an identifier) in order to solve those problems.

A. P1 – Trust Establishment

Manual verification of keys would corrupt the automation of
the process. Additionally a manual verification is not accepted
by end users as mentioned in section II-C. Therefore the
automated key exchange process requires a trusted third party
to ensure the authenticity of the exchanged key. The drawback
of central trust providers is that they are attractive targets for
attackers as they maintain large quantities of keys.

G1 – Opportunistic Distributed Approach: The workflows
ensure integrity and authenticity by putting trust into the own
mail provider and its infrastructure. Therefore the end user’s
confidence about their mail provider’s trustworthiness is ben-
eficial. Putting trust in the own mail provider is more secure
than not making use of encryption (resp. the key exchange)
at all. The mail provider has the opportunity to verify the
user’s identity by executing an authentication process. Hence
the same credentials could be used by the mail provider to
authenticate regarding the acceptance of the user’s key. This is
how the provider can ensure that the received Kpub is bound to
the user’s account. Therefore the mail provider can announce
the key publicly. Anybody else who asks the same provider
for Kpub can assume that the provider ensures the authenticity
of the key with appropriate mechanisms.

This approach requires end users’ trust to their mail provider
and therefore the mail provider’s infrastructure. The MUA can
use this trust relationship to make Kpub publicly available
without fear of forgery. This trust relationship is not possible
with public key servers because of the lack of authentication
as mentioned in section II-D.

B. P2 – Adoption and Deployment

This work proposes two workflows, that need to be adopted
by users. The benefits of the presented workflows are less
useful without a certain level of adoption. In order to increase
the adoption rate it is necessary to simplify the deployment
of all required software components as well. The following
design goals solve those problems.

G2a – Scalability: The higher the adoption rate the more
scalable the software components should be. It is necessary to
consider scalability since fast adoption is desired. Therefore
the amount of necessary messages per key publication and
retrieval is crucial.

Scalability is important for the proposed workflows as they
need to maintain performance regardless of the amount of
users and mail providers. Proprietary approaches offered by
individual mail providers are isolated (section II-E). Therefore
they do not need to specify how to deal with scalability
publicly.

G2b – Cost Efficiency: In order to reach a wide-spread
and consistent solution it is necessary to provide cost-efficient
handling of software packages. Providers and users should
have low costs regarding expenditure of time and money.
This means that simple deployment should be possible – both
on the client-side and on the server-side. The same should
apply regarding the maintenance for the end user and for the
provider.

C. P3 – Key Authenticity and Integrity

Assurance of integrity and authenticity is mandatory re-
garding the detection of forged keys. All existing approaches
described in section II are either isolated applications or are
not accepted by end users because of the lack of automation.

G3 – Message Authentication Codes: A solution is to use
Message Authentication Codes (MAC) generated by the mail
provider. In both the Key Publication as well as the Key
Retrieval it is necessary to send responses. While doing so,
the provider is unable to ensure that the message will not be
modified on its way to the original MUA. This is why the
MUA has to send randomly-generated keys, that can be used
for the MAC. After receiving the response message the MUA
is able to verify that the content of the message matches the
generated MAC. This is how active attacks can be detected,
meaning that authenticity and integrity of the key can be
checked.

D. P4 – Service Discovery

The automation of the described workflows require an
automatable way of service discovery as well. Many existing
solutions are isolated applications as described in the related
work section. It is unnecessary to search and find key-holding
servers in those cases. In openly available solutions like HKP
key servers DNS resource records are used to announce the ip
address of key-holding servers.

G4 – Service Lookup: The bottom line is that clients need
to find the provider’s key-holding server. Afterwards those
servers can be used for key publication and key retrieval. The



Fig. 1. Key Publication Protocol

Fig. 2. Key Retrieval Protocol

proposed workflows described herein need a way to disclose
the key-holding server’s ip address.

IV. PROTOCOL DESIGN

The protocols defined in this part enable the fulfillment of
the design goals for the analyzed problems. Both protocols are
based on publishing and retrieving public keys utilizing emails
transferred on top of SMTP.

The proposed protocols demand the transfer of a few nec-
essary emails. This manageable amount is how the protocols
can ensure a high level of scalability (G2a).

Additionally the protocols are addressed to keep costs
under control (G2b) by using as much existing technology
as possible. Both protocols are based on the existing email
ecosystem that is distributed over the internet. The email
format is used for all messages sent within the protocols
as explained afterwards in detail. Additionally neither new
complex nor existing applications need to be integrated or
changed. This ensures a low maintenance effort (G2b) as
well. Furthermore users look after themselves, meaning they
care about publishing and retrieving keys with no provider
interference (G2b).

Regarding goal G4 (Service Discovery) it is required that
clients are able to discover the right mail server (resp. its

ip address). This issue is solved particularly for the specified
protocols afterwards utilizing the DNS. Moreover they need
to find out whether the described workflows are supported.
This problem is solved by sending and receiving emails. The
MUA knows whether the service is supported if receiving a
properly formatted email. Hence bounce emails are handled as
improperly formatted emails, i.e. the service is not supported
by the contacted provider.

A. Key Publication Protocol

The first protocol handles the key publishing sequence (see
figure 1). Initially clients need to connect to the SMTP sub-
mission port (587) of the Message Submission Agent (MSA)
as defined for the usual submission of emails [31]. It should be
considered that the MUA knows the submission port already
in order to send usual emails. If the MUA does not know
the submission server, DNS could be used to request the
appropriate SRV resource record [32].

The MSA has to demand user authentication before sub-
mitting a new email as specified for the submission port
[31]. This is how the provider verifies the identity of the
MUA and thereby ensures the authenticity of the email to
be transfered. This sequence can be seen as a warranty of
authenticity and integrity (G3) if the transport is secured by



making use of Transport Layer Security (TLS). The MSA
accepts the email (with Kpub) and adds the Authenticated
sender header, that contains the mailbox account id of the
authenticated user [33], [34]. Furthermore the email must
contain a base64-encoded randomly generated key Kauth. This
key is required to guarantee integrity in a later phase.

The Key Publication Protocol defines that both Kpub as
well as Kauth have to be sent within the email body. Kpub

has to be in the form of ASCII Armor, that uses the base64
encoding. This data format is defined within the OpenPGP
Message Format specification [35].

The defined recipient address is defined with keys as the
local part [36]. This address triggers the MSA/MTA to channel
out the email to a Key Storage Service (KST). The KST
checks whether the MSA set the Authenticated sender
header and reuses the containing mailbox account to store the
key (G3). After the storage process the KST has to send a
confirmation email. This affirmation contains a Keyed-Hash
for Message Authentication (HMAC). Finally, the MUA must
verify HMAC(Kauth,Kpub) to ensure the successful storage
process.

This protocol is highly scalable since two emails are nec-
essary for the whole publication protocol (G2a). Even big
provider infrastructures could be managed with more than
one mail server. Therefore a provider has to synchronize keys
between its own mail servers.

B. Key Retrieval Protocol

The second protocol enables fetching of someone’s public
key Kpub (see figure 2). The Key Retrieval Protocol uses
a DNS lookup in order to learn the ip address of the key-
holding MTA at first (MX resource record). Afterwards the
MUA is able to establish a SMTP connection by connecting
to port 25. That port is typically used for server-to-server
communication without authentication mechanisms [37]. In
the described use case the user has no mailbox account at
the key-holding provider necessarily. This is why the protocol
has to circumvent authentication. Additionally the MX resource
record is defined as the record, that provides the ip address
serving port 25 [37]. The established connection has to be
secured by making use of TLS (as mentioned for the Key
Publicaton Protocol).

Now the email has to be submitted with the key query within
the email body. The email request must contain the queried
email address and a base64-encoded randomly generated key
Kauth, that is used later for the key response. The MUA
keeps Kauth for later verification. Then the MTA receives
the email and forwards it to the KST based on the recipient
email address. This address contains the string keys as the
local part as seen in the Key Publication Protocol already. The
KST loads Kpub, calculates HMAC(Kauth,Kpub) and sends
both back to the sender’s mailbox. Now the sender is able to
fetch the response and to extract Kpub. Finally, the MUA can
ensure key authenticity and integrity by verifying the HMAC
(G3).

1 From alice@example.net Sun Mar 4 16:47:07 2018
2 Return-Path: <alice@example.net>
3 Received: from [10.0.0.1] (unknown [12.80.3.21])
4 (Authenticated sender: alice@example.net)
5 by example.net (Postfix) with ESMTPSA id 53F3A161B01
6 for <keys@example.net>; Sun, 4 Mar 2018 16:47:07 +0100 (AT)
7 To: keys@example.net
8 From: Alice <alice@example.net>
9 Message-ID: <0efca192...bb11e87d9978@example.net>

10 Date: Sun, 4 Mar 2018 16:47:09 +0100
11
12 -----BEGIN PGP PUBLIC KEY BLOCK-----
13 VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wcyBvdmVyIHRoZSBsYXp5

14
.
.
.

15 -----END PGP PUBLIC KEY BLOCK-----
16 4QPeQ/MY6VCZ/8TczqZemjLKP2rvbCwxXGhC7S2v80E=

Fig. 3. Key publication email

1 From keys@example.net Sun Mar 4 16:04:33 2018
2 Return-Path: <keys@example.net>
3 Received: by example.net (Postfix, from userid 1000)
4 id 984191607DE; Sun, 4 Mar 2018 16:04:33 +0100 (AT)
5 To: <alice@example.net>
6 Message-Id: <201803...91607DE@example.net>
7 Date: Sun, 4 Mar 2018 16:04:33 +0100 (AT)
8 From: keys@example.net (Key Storage Service)
9

10 AnqfPJRZeXjOJHZ4BEkJiJ4tXn4vRM5D81dtcH3bb0Q=

Fig. 4. Key confirmation email

The Key Retrieval Protocol is highly scalable as making
use of two emails for the whole workflow (G2a). Hence low
network traffic is induced for this protocol as well.

V. IMPLEMENTATION AND EVALUATION

The last sections point out the analyzed problems and
the designed protocols. A Prove of Concept (PoC) has been
implemented within the scope of this paper. This part explains
how the proposed protocols were implemented. Additionally
the implementation is used to evaluate the introduced concepts
and design goals.

A. Prove of Concept

The mail server Postfix is used for the mentioned authen-
tication sequence. The implementation is possible with every
mail server that is able to route emails to external services.
Therefore it is used as the MSA and MTA in order to receive
the emails for submitting keys and key queries.

If the MUA tries to submit a new key after the authen-
tication sequence, the server appends the Authenticated
sender header (line 4 in figure 3). The MUA sends Kauth

within the email as well. Then it forwards the email to the
KST. The KST is a Python script used to parse the received
email. It then stores the key on the file system in case of a
successful authentication. The containing Kauth (line 16) is
used to generate the HMAC utilizing Kpub (line 12-15). For
this PoC hmac-sha256 is used as the HMAC algorithm with
a 32-byte-key. Then the confirmation email (figure 4) is sent
by the script in reply containing the HMAC (line 10).

The Key Retrieval Protocol has been implemented as fol-
lows. The key request email (figure 5) has to be parsed if no



1 From bob@acme.net Sun Mar 4 16:34:15 2018
2 Return-Path: <bob@acme.net>
3 Received: by example.net (Postfix, from userid 112)
4 id 61A40160923; Sun, 4 Mar 2018 16:34:15 +0100 (AT)
5 Received: from [10.0.0.1] (unknown [12.80.3.21])
6 by example.net (Postfix) with ESMTP id C151F1607DC
7 for <keys@example.net>; Sun, 4 Mar 2018 16:33:53 +0100 (AT)
8 Message-Id: <2018031...160923@example.net>
9 Date: Sun, 4 Mar 2018 16:34:15 +0100 (AT)

10 From: bob@example.net
11
12 alice@example.net
13 fjGYoKb6RUEmx1EWKSj6KkKR5U6hTzIi/FH5HFfdgSs=

Fig. 5. Key request email

1 Return-Path: <keys@example.net>
2 Delivered-To: bob@acme.net

3
.
.
.

4 To: <bob@acme.net>
5 Message-Id: <201803...160923@example.net>
6 Date: Sun, 4 Mar 2018 16:50:33 +0100 (AT)
7 From: keys@example.net (Key Storage Service)
8
9 -----BEGIN PGP PUBLIC KEY BLOCK-----

10 VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wcyBvdmVyIHRoZSBsYXp5

11
.
.
.

12 -----END PGP PUBLIC KEY BLOCK-----
13 RLgV0ga4A11yEAqSAHOsVwO6lNsZou0V2nMzzOD9XbY=

Fig. 6. Key response email

Authenticated sender header has been found within.
It must contain both the queried email address (line 12) and
Kauth (line 13) again. The queried email is used to find Kpub

on the file system. The HMAC has to be generated over Kpub

(hmac-sha256 with a 32-byte-key again). The KST sends
the key response email (figure 6) containing Kpub (line 9-12)
and the HMAC (line 13).

We developed a Python application on the client-side to test
the server implementation. The Python script implements both
protocols and behaves in the same way as a MUA would. Two
different modes allow the script to handle the key publication
and the key retrieval sequences.

It has become evident that both protocols work as specified
in section IV. Concepts used in the protocol design are well-
understood in the security community. Utilized cryptographic
algorithms and trust relationships are very simple to integrate
because of existing frameworks. It turned out that the effort
of development, installation and maintenance is very low. The
low cost effort may lead to a higher adoption and deployment
rate (G2b).

B. SMTP Reverse Lookup

The PoC shows that implications can occur in case of
requesting a key from the MTA (port 25). For instance the
Postfix mail server implements an optional feature called
reject_unknown_client_hostname [38]. Setting this
option leads to checks of the client ip address. If the DNS
reverse lookup does not match with the sender email address,
the email can be rejected. As a consequence this security
feature can not be used with the designed protocols. Reverse

lookups would be possible only if the MUA uses an ip address
where the reverse lookup ends in the right domain. This has
to be the domain in the last part of the email address for
every request. The end user could ensure that the PTR resource
record is set right for the used internet connection [39]. This is
unlikely, especially for mobile devices. The usage of different
gateways at different locations leads to changing ip addresses.

C. Key Validity and Trustworthiness

The OpenPGP standard supports validity mechanisms for
key expiration and revocation [35]. Those features are not
part of this work and were not implemented within the PoC.
As a first proposal both mechanisms can be covered by the
protocols implicitly. If a key expires, the MUA can include an
implementation to automatically submit a new key pair. The
public key can be published with the specified Key Publication
Protocol. The same applies for key revocation. If problems like
the leakage of the published private key occur, a new public
key can be published. This action has to be triggered by the
end user.

Another feature OpenPGP offers is signing trusted public
keys to establish higher trust [35]. This part of the specification
is not considered within this paper as well. Nevertheless the
protocols do not exclude the feature. It is still possible to
submit keys including their signatures to the provider’s mail
server.

D. Complementary Protocols

As described in section II there are existing approaches
related to the proposed protocols. Especially the transparency
frameworks can be used as a suitable enhancement. The pro-
posed protocols offer an authenticated way of key distribution.
While being in possession of a public key of another person,
transparency frameworks can be used to monitor whether the
key material has been changed.

The proposed protocols still show up with some drawbacks
regarding performance. Compared to lower-level protocols
email transport leads to a higher amount of transmitted infor-
mation, meaning the overhead is higher. For instance the usage
of plain SMTP connections for the publication and retrieval
protocol is much more efficient. Email transmission consists of
the transport over multiple hops. This could lead to unreliable
performance, especially caused by the fact that queuing and
caching mechanisms are in use. Therefore it is recommended
to use the proposed protocols before the end user wants to
send an encrypted message. As a consequence the user is not
forced to wait until the key retrieval has been finished.

The proposed protocols qualify for subsequent verification
as well, meaning key authenticity check in retrospect. The
original source of the public key does not matter for that
purpose.

E. Big Mail Providers

The PoC consists of an implementation for infrastructures
with a single mail server. Implications may emerge despite
of the scalable nature of the protocols. Mail providers do not



handle the same amount of mailboxes as statistics show [40].
Therefore it can be expected that they would have to handle a
different amount of public keys if they implement the proposed
protocols. Hence there would be mail providers, that handle
more public keys than others. Being in the possession of
more keys leads to a higher attractiveness of active attackers.
Therefore it can be assumed that big mail providers are more
threatened by attackers than smaller ones.

VI. FUTURE WORK

The last chapter points out how the developed workflows
solve the previously analyzed problems. Nevertheless a few
points still need to be conducted. The following sections show
topics to be discussed in the future.

A. DNS Security

DNS is used within the proposed protocols as figures 1 and
2 show. DNS lookups are neither secured against passive nor
active attacks. Avoidance of passive attacks is not mandatory
for the designed protocols because privacy was not a goal
of DNS. Certainly active attacks are more problematic. In
the current design, the protocols are vulnerable against the
forgery of DNS responses. Therefore MX resource records can
be spurious.

There are several solutions that should be considered in the
future to harden the protocols. One of them would be to use
DNSSEC in order to secure the MX records. Currently, this
approach is not conceivable as DNSSEC is not commonly
deployed as research shows [41]. DNS-based Authentication
of Named Entities (DANE) could enable the verification of the
used X.509 certificates additionally. DANE is not commonly
implemented as well [41].

Another solution is called DNS over TLS and is specified to
avoid passive and active attackers [42]. Some common client
and server applications’ feature implementation is in progress
already [43].

Those solutions are necessary to stabilize the key publica-
tion and key retrieval.

B. Cryptographic Primitives

This paper uses hmac-sha256 for the HMAC generation
with a 32-byte sized key. This decision has to be considered
in the future. The same applies for the mentioned keys.

The protocols can be improved in order to be more future-
proof regarding security. A more dynamic way of choosing
cryptographic primitives could ensure a long-lasting adoption.
The protocols should be altered in order to enable the replace-
ment of broken algorithms quickly. Therefore new protocol
versions have to be specified.

C. Blocked Email Traffic

An effective resistance against spam is blocking outgoing
traffic with the destination port 25 [44], [45]. This causes
problems regarding the Key Retrieval Protocol. The protocol
is based on requesting keys by submitting an email without
authentication. Therefor the MUA queries the MTA of another

person’s provider using port 25. Future work may consider this
issue since blocking this port is pretty common [44], [45].

D. Key Synchronization

The PoC has been implemented for a single mail server
instance. Problems could emerge regarding multiple mail
servers (resp. key repositories) on behalf of a mail provider.
Synchronization of submitted public keys is necessary to avoid
or resolve conflicts between servers. This issue has to be
conducted in the future.

VII. CONCLUSIONS

The research of commercial and non-commercial software
and projects has shown that existing solutions have very
diverse approaches concerning assistance regarding key ex-
change. Most of the provider’s implementations are proprietary
and therefore developed for individual mail providers only.
Non-commercial approaches do not solve problems regarding
the automation of the key exchange.

The hereby presented protocols solve the analyzed prob-
lems derivated in section III. Both protocols handle the key
exchange automatically with no user interaction. The provider
is used in the sense that a trust relationship can be established
(G1). A distributed approach (G2a) and the little installation
and maintenance effort required (G2b) may enable a high
adoption rate and a simple way of deployment. The use of
mailbox credentials and the HMAC generation ensure key au-
thenticity and integrity (G3). The established trust relationship
with the mail provider can be utilized for that goal. DNS is
used to discover whether the protocols are supported by the
provider (G4).

The PoC implementation of the client and server software
shows that the designed protocols can be integrated into
existing mail infrastructures in a simple way. Hence existing
infrastructures do not need to be changed. The costs of the
implementation can be kept low because of the usage of
common concepts like email.

The usage of DNS within the proposed protocols still leads
to security issues to be resolved in the future. However, the
automated workflows may lead to a high adoption rate by
end users. This is how the automation of the key exchange
may enable improvements of the current security level within
the mailing ecosystem. The practical usage of the developed
protocols can be extended by using other protocols in combi-
nation. Using protocols like Key Transparency may ensure the
fast detection of forged keys for example.

REFERENCES

[1] A. Whitten and J. D. Tygar, “Why Johnny Can’T Encrypt: A Usability
Evaluation of PGP 5.0,” in Proceedings of the 8th Conference on
USENIX Security Symposium - Volume 8, ser. SSYM’99, Berkeley,
CA, USA: USENIX Association, 1999, pp. 14–14. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=1251421.1251435 (visited on
01/14/2018).

[2] S. Ruoti, J. Andersen, D. Zappala, and K. Seamons, “Why Johnny
Still, Still Can’t Encrypt: Evaluating the Usability of a Modern
PGP Client,” arXiv:1510.08555 [cs], Oct. 2015, arXiv: 1510.08555.
[Online]. Available: http : / / arxiv. org / abs / 1510 . 08555 (visited on
11/22/2017).

http://dl.acm.org/citation.cfm?id=1251421.1251435
http://arxiv.org/abs/1510.08555


[3] S. Sheng, L. Broderick, J. J Hyland, and C. Alison Koranda, Why
Johnny still can’t encrypt: evaluating the usability of email encryption
software. ACM - Proceedings of the second symposium on Usable
privacy and security, Nov. 2017.

[4] A. Langley, E. Kasper, and B. Laurie, “Certificate Transparency,”
RFC Editor, RFC 6962. [Online]. Available: http://www.rfc-editor.
org/rfc/rfc6962.txt (visited on 11/26/2017).

[5] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J.
Freedman, “CONIKS: Bringing Key Transparency to End Users,”
in Proceedings of the 24th USENIX Conference on Security Sympo-
sium, ser. SEC’15, Berkeley, CA, USA: USENIX Association, 2015,
pp. 383–398, ISBN: 978-1-931971-23-2. [Online]. Available: http://dl.
acm.org/citation.cfm?id=2831143.2831168 (visited on 11/28/2017).

[6] Key Transparency: A transparent and secure way to look up public
keys, Nov. 2017. [Online]. Available: https : / / github . com / google /
keytransparency (visited on 11/26/2017).

[7] Pretty easy privacy documentation. [Online]. Available: https : / /
prettyeasyprivacy.com/docs/ (visited on 03/06/2018).

[8] M. Horowitz, “A PGP Public Key Server,” 1997. [Online]. Available:
http://www.mit.edu/afs/net.mit.edu/project/pks/thesis/paper/thesis.
html.

[9] D. Shaw, “The OpenPGP HTTP Keyserver Protocol (HKP),” en, IETF
Secretariat, Internet-Draft draft-shaw-openpgp-hkp-00.txt, 2003.

[10] Web Key Directory - Pubkey Distribution Concept. [Online].
Available: https : / / wiki . gnupg . org / EasyGpg2016 /
PubkeyDistributionConcept (visited on 03/06/2018).

[11] WKD - GnuPG wiki. [Online]. Available: https://wiki.gnupg.org/WKD
(visited on 03/08/2018).

[12] W. Koch, “OpenPGP Web Key Directory,” en, IETF Secretariat,
Internet-Draft draft-koch-openpgp-webkey-service-05.txt.

[13] Posteo - Encryption. [Online]. Available: https://posteo.de/en/site/
encryption (visited on 11/30/2017).

[14] Posteo - How do I publish the public PGP key for my Posteo email
address in the Posteo key directory? [Online]. Available: https : / /
posteo .de /en /help /publishing- public - pgp- key- for- posteo - email -
address (visited on 11/30/2017).

[15] Mailbox.org - Eigenen PGP-Schlüssel verwenden. [Online]. Avail-
able: https://support.mailbox.org/knowledge-base/article/kann- ich-
eigene-pgp-schluessel-im-mailbox-org-guard-importieren (visited on
11/30/2017).

[16] Einfache und sichere Verteilung Ihres öffentlichen PGP-Schlüssels.
[Online]. Available: https://mail.de/hilfe/nachrichten-pgp-schluessel-
veroeffentlichen (visited on 11/30/2017).

[17] Der mailbox.org HKPS-Keyserver. [Online]. Available: https : / /
support.mailbox.org/knowledge-base/article/der-mailbox-org-hkps-
keyserver (visited on 11/30/2017).

[18] Verschlüsselt E-Mails versenden künftig leichter, Oct. 2017. [Online].
Available: https : / / mailbox . org / verschluesselung - von - e - mails -
kuenftig-leichter-bedienbar/ (visited on 11/21/2017).

[19] P. Fischer, T. Kunz, K. Lorenz, and U. Waldmann, “Verfahren
zur vertrauenswürdigen Verteilung von Verschlüsselungsschlüsseln,”
INFORMATIK 2017, 2017.

[20] J. Damas, M. Graff, and P. Vixie, “Extension Mechanisms for DNS
(EDNS(0)),” en, RFC Editor, RFC 6891. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc6891.txt (visited on 03/03/2018).

[21] DNSSEC and DNS Amplification Attacks. [Online]. Available: https:
/ / technet .microsoft .com/en- us/security/hh972393.aspx (visited on
03/30/2018).

[22] Mailbox.org - verschlüsselte E-Mails versenden. [Online]. Available:
https://support.mailbox.org/knowledge-base/article/verschluesselte-e-
mails-mit-guard-versenden (visited on 11/30/2017).

[23] Einführung in mailbox.org Guard. [Online]. Available: https://support.
mailbox.org/knowledge- base/article/einfuehrung- in- mailbox- org-
guard (visited on 11/30/2017).

[24] Mailvelope Add-on verwenden. [Online]. Available: https://support.
mailbox.org/knowledge-base/article/mailvelope-add-on-mit-guard-
verwenden (visited on 11/30/2017).

[25] GMX - Verschlüsselte Kommunikation mit PGP im Detail. [Online].
Available: https://www.gmx.net/mail/sicherheit/pgp/details/ (visited
on 11/21/2017).

[26] Mail.de - PGP mit Mailvelope. [Online]. Available: https://mail.de/
hilfe/nachrichten-pgp-mit-mailvelope (visited on 11/30/2017).

[27] Mailvelope client: Roundcube plugin to use Mailvelope’s OpenPGP-
support, https://github.com/posteo/mailvelope client, Jan. 2017. [On-

line]. Available: https://github.com/posteo/mailvelope client (visited
on 11/30/2017).

[28] WebClient: Official AngularJS web client for the ProtonMail secure
email service, Nov. 2017. [Online]. Available: https : / /github.com/
ProtonMail/WebClient (visited on 11/30/2017).

[29] Mailpile: A free & open modern, fast email client with user-friendly
encryption and privacy features, Nov. 2017. [Online]. Available: https:
//github.com/mailpile/Mailpile (visited on 11/29/2017).

[30] Autocrypt Level 1: Enabling encryption, avoiding annoyances —
Autocrypt 1.0.0 documentation. [Online]. Available: https://autocrypt.
org/level1.html (visited on 03/04/2018).

[31] J. C. Klensin and R. Gellens, “Message Submission for Mail,” en,
RFC Editor, RFC 6409, Nov. 2011. [Online]. Available: http://www.
rfc-editor.org/rfc/rfc6409.txt (visited on 03/02/2018).

[32] C. Daboo, “Use of SRV Records for Locating Email Submission/Ac-
cess Services,” en, RFC Editor, RFC 6186. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc6186.txt (visited on 01/14/2018).

[33] Postfix Configuration Parameters. [Online]. Available: http://postfix.
cs . utah . edu / postconf . 5 . html # smtpd sasl authenticated header
(visited on 03/02/2018).

[34] Exim documentation - chapter 33 - SMTP authentication. [Online].
Available: https : / / www. exim . org / exim - html - current / doc / html /
spec html/ch- smtp authentication.html#SECTauthparamail (visited
on 03/02/2018).

[35] D. Shaw, L. Donnerhacke, R. Thayer, H. Finney, and J. Callas,
“OpenPGP Message Format,” en, RFC Editor, RFC 4880. [Online].
Available: http : / / www. rfc - editor . org / rfc / rfc4880 . txt (visited on
03/03/2018).

[36] P. W. Resnick, “Internet Message Format,” en, RFC Editor, RFC 5322.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc5322.txt (visited
on 03/03/2018).

[37] J. C. Klensin, “Simple Mail Transfer Protocol,” en, RFC Editor, RFC
5321. [Online]. Available: http://www.rfc-editor.org/rfc/rfc5321.txt
(visited on 03/04/2018).

[38] Postfix Configuration Parameters. [Online]. Available: http:/ /www.
postfix.org/postconf.5.html (visited on 03/09/2018).

[39] P. V. Mockapetris, “Domain names - implementation and specifica-
tion,” en, RFC Editor, RFC 1035. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc1035.txt (visited on 03/10/2018).

[40] Statista - Leading U.S. consumer e-mail providers 2016, by age, en,
2018. [Online]. Available: https://www.statista.com/statistics/547531/
e-mail-provider-ranking-consumer-usa-age/ (visited on 03/10/2018).

[41] T. Maier, T. Schreck, and H.-J. Hof, “Kurzvortrag: Aktuelle Umset-
zung von SMTP over TLS – Ein Realitätscheck,” 23. DFN-Konferenz
- Sicherheit in vernetzten Systemen, 2016, [Online]. Available: https:
//www.dfn-cert.de/veranstaltungen/vortrage-vergangener-workshops/
23Siko2016.html.

[42] D. Wessels, J. Heidemann, L. Zhu, A. Mankin, and P. Hoffman,
“Specification for DNS over Transport Layer Security (TLS),” en,
RFC Editor, RFC 7858. [Online]. Available: http://www.rfc- editor.
org/rfc/rfc7858.txt (visited on 03/11/2018).

[43] DNS Privacy Implementation Status. [Online]. Available: https : / /
dnsprivacy. org / wiki / display / DP / DNS + Privacy + Implementation +
Status (visited on 03/11/2018).

[44] M. Xie, H. Yin, and H. Wang, “An effective defense against email
spam laundering,” in Proceedings of the 13th ACM Conference on
Computer and Communications Security, ser. CCS ’06, New York,
NY, USA: ACM, 2006, pp. 179–190, ISBN: 978-1-59593-518-2. DOI:
10.1145/1180405.1180428. [Online]. Available: http://doi.acm.org/
10.1145/1180405.1180428 (visited on 03/31/2018).

[45] A. Ramachandran and N. Feamster, “Understanding the network-level
behavior of spammers,” in Proceedings of the 2006 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer
Communications, ser. SIGCOMM ’06, New York, NY, USA: ACM,
2006, pp. 291–302, ISBN: 978-1-59593-308-9. DOI: 10.1145/1159913.
1159947. [Online]. Available: http://doi.acm.org/10.1145/1159913.
1159947 (visited on 03/31/2018).

http://www.rfc-editor.org/rfc/rfc6962.txt
http://www.rfc-editor.org/rfc/rfc6962.txt
http://dl.acm.org/citation.cfm?id=2831143.2831168
http://dl.acm.org/citation.cfm?id=2831143.2831168
https://github.com/google/keytransparency
https://github.com/google/keytransparency
https://prettyeasyprivacy.com/docs/
https://prettyeasyprivacy.com/docs/
http://www.mit.edu/afs/net.mit.edu/project/pks/thesis/paper/thesis.html
http://www.mit.edu/afs/net.mit.edu/project/pks/thesis/paper/thesis.html
https://wiki.gnupg.org/EasyGpg2016/PubkeyDistributionConcept
https://wiki.gnupg.org/EasyGpg2016/PubkeyDistributionConcept
https://wiki.gnupg.org/WKD
https://posteo.de/en/site/encryption
https://posteo.de/en/site/encryption
https://posteo.de/en/help/publishing-public-pgp-key-for-posteo-email-address
https://posteo.de/en/help/publishing-public-pgp-key-for-posteo-email-address
https://posteo.de/en/help/publishing-public-pgp-key-for-posteo-email-address
https://support.mailbox.org/knowledge-base/article/kann-ich-eigene-pgp-schluessel-im-mailbox-org-guard-importieren
https://support.mailbox.org/knowledge-base/article/kann-ich-eigene-pgp-schluessel-im-mailbox-org-guard-importieren
https://mail.de/hilfe/nachrichten-pgp-schluessel-veroeffentlichen
https://mail.de/hilfe/nachrichten-pgp-schluessel-veroeffentlichen
https://support.mailbox.org/knowledge-base/article/der-mailbox-org-hkps-keyserver
https://support.mailbox.org/knowledge-base/article/der-mailbox-org-hkps-keyserver
https://support.mailbox.org/knowledge-base/article/der-mailbox-org-hkps-keyserver
https://mailbox.org/verschluesselung-von-e-mails-kuenftig-leichter-bedienbar/
https://mailbox.org/verschluesselung-von-e-mails-kuenftig-leichter-bedienbar/
http://www.rfc-editor.org/rfc/rfc6891.txt
http://www.rfc-editor.org/rfc/rfc6891.txt
https://technet.microsoft.com/en-us/security/hh972393.aspx
https://technet.microsoft.com/en-us/security/hh972393.aspx
https://support.mailbox.org/knowledge-base/article/verschluesselte-e-mails-mit-guard-versenden
https://support.mailbox.org/knowledge-base/article/verschluesselte-e-mails-mit-guard-versenden
https://support.mailbox.org/knowledge-base/article/einfuehrung-in-mailbox-org-guard
https://support.mailbox.org/knowledge-base/article/einfuehrung-in-mailbox-org-guard
https://support.mailbox.org/knowledge-base/article/einfuehrung-in-mailbox-org-guard
https://support.mailbox.org/knowledge-base/article/mailvelope-add-on-mit-guard-verwenden
https://support.mailbox.org/knowledge-base/article/mailvelope-add-on-mit-guard-verwenden
https://support.mailbox.org/knowledge-base/article/mailvelope-add-on-mit-guard-verwenden
https://www.gmx.net/mail/sicherheit/pgp/details/
https://mail.de/hilfe/nachrichten-pgp-mit-mailvelope
https://mail.de/hilfe/nachrichten-pgp-mit-mailvelope
https://github.com/posteo/mailvelope_client
https://github.com/ProtonMail/WebClient
https://github.com/ProtonMail/WebClient
https://github.com/mailpile/Mailpile
https://github.com/mailpile/Mailpile
https://autocrypt.org/level1.html
https://autocrypt.org/level1.html
http://www.rfc-editor.org/rfc/rfc6409.txt
http://www.rfc-editor.org/rfc/rfc6409.txt
http://www.rfc-editor.org/rfc/rfc6186.txt
http://www.rfc-editor.org/rfc/rfc6186.txt
http://postfix.cs.utah.edu/postconf.5.html#smtpd_sasl_authenticated_header
http://postfix.cs.utah.edu/postconf.5.html#smtpd_sasl_authenticated_header
https://www.exim.org/exim-html-current/doc/html/spec_html/ch-smtp_authentication.html#SECTauthparamail
https://www.exim.org/exim-html-current/doc/html/spec_html/ch-smtp_authentication.html#SECTauthparamail
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc5322.txt
http://www.rfc-editor.org/rfc/rfc5321.txt
http://www.postfix.org/postconf.5.html
http://www.postfix.org/postconf.5.html
http://www.rfc-editor.org/rfc/rfc1035.txt
http://www.rfc-editor.org/rfc/rfc1035.txt
https://www.statista.com/statistics/547531/e-mail-provider-ranking-consumer-usa-age/
https://www.statista.com/statistics/547531/e-mail-provider-ranking-consumer-usa-age/
https://www.dfn-cert.de/veranstaltungen/vortrage-vergangener-workshops/23Siko2016.html
https://www.dfn-cert.de/veranstaltungen/vortrage-vergangener-workshops/23Siko2016.html
https://www.dfn-cert.de/veranstaltungen/vortrage-vergangener-workshops/23Siko2016.html
http://www.rfc-editor.org/rfc/rfc7858.txt
http://www.rfc-editor.org/rfc/rfc7858.txt
https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Implementation+Status
https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Implementation+Status
https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Implementation+Status
https://doi.org/10.1145/1180405.1180428
http://doi.acm.org/10.1145/1180405.1180428
http://doi.acm.org/10.1145/1180405.1180428
https://doi.org/10.1145/1159913.1159947
https://doi.org/10.1145/1159913.1159947
http://doi.acm.org/10.1145/1159913.1159947
http://doi.acm.org/10.1145/1159913.1159947

	Introduction
	Related Work
	Transparency Frameworks
	Manual Key Verification
	Web of Trust
	Key Servers
	Mail Provider Approaches
	Public Key Upload and Retrieval
	Approaches to Assist in Encryption
	Service Discovery
	Deployment Distribution

	Client-side Approach
	Guidelines

	Analysis
	P1 – Trust Establishment
	P2 – Adoption and Deployment
	P3 – Key Authenticity and Integrity
	P4 – Service Discovery

	Protocol Design
	Key Publication Protocol
	Key Retrieval Protocol

	Implementation and Evaluation
	Prove of Concept
	SMTP Reverse Lookup
	Key Validity and Trustworthiness
	Complementary Protocols
	Big Mail Providers

	Future Work
	DNS Security
	Cryptographic Primitives
	Blocked Email Traffic
	Key Synchronization

	Conclusions

