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Abstract

In the past, several computer network attacks focused on obtaining credentials to proceed com-
promising. Furthermore, attackers made use of permissions of the stolen identity. Hereby, it is
possible to even use indirectly assigned permissions by means of group memberships. This kind
of lateral movement attacks are called Identity Snowball Attacks. This thesis tackles this spe-
cific problem in networks based on Microsoft Active Directory (AD). Moreover, the presented
solution may be applied for a more general problem, i.e. for networks where administrative
permissions are maintained similarly to AD networks.

Other approaches like the security-aware set-up and maintenance of AD networks are hardly
implementable in large organizations as this solution may be rather time consuming. Even
host-based approaches prove to be insufficient solutions. Hence, this thesis asks how to find
undesired configurations in Network Session and Permission Graphs so that countermeasures
can be initiated. The major goal of the introduced solution is to improve network security,
especially by decreasing the risks of Identity Snowball Attacks.

This thesis describes typical attacker’s behaviors regarding Identity Snowball Attacks. Hereby,
we design configurations that potentially may be undesired. Those configurations consist of
sub-structures within the graph that may be beneficial for an attacker and therefore support
conducting Identity Snowball Attacks. It is shown, how to detect those configurations with
graph-theoretic metrics.

Compared to other graph-theoretical approaches, the introduced solution is able to automati-
cally analyze Network Session and Permission graphs with multiple centrality metrics: Degree,
Betweenness and Closeness Centrality. The solution is evaluated with respect to its effectiveness
by using randomly generated graphs. Thereby, undesired configurations are injected into the
graphs. Afterwards, it is tested how well the configurations can be found by using centrality
metrics. Finally, the functionality is tested with a graph originating from a significantly larger
real AD network.

It turns out, that the solution enables an organization to successfully discover potentially unde-
sired configurations by means of Degree Centrality and Betweenness Centrality. In contrast, the
detection was not possible with the Closeness Centrality. Incidentally, we observe that another
centrality metric – the PageRank – may be a comprehensive metric since the results strongly
correlate with Degree and Betweenness Centrality. The PageRank metric seems to be the most
effective centrality metric and therefore further research is necessary.





Zusammenfassung

In der Vergangenheit konzentrierten sich einige Angriffe in Computer-Netzwerken darauf, Zu-
gangsdaten für eine weitere Kompromittierung zu bekommen. Zudem nutzten Angreifer die zuge-
wiesenen Berechtigungen der gestohlenen Identität, wozu auch durch Gruppen-Mitgliedschaften
indirekt erlangte Berechtigungen gehören. Diese Art von Lateral-Movement-Angriffen werden
Identity Snowball Attacks genannt. Diese Arbeit widmet sich diesem speziellen Problem be-
zogen auf Netzwerke, die auf Microsoft Active Directory (AD) basieren. Außerdem kann die
vorgestellte Lösung auch auf das generellere Problem – Netzwerke, die administrative Berechti-
gungen ähnlich zu AD verwalten – angewendet werden.

Andere Ansätze wie das sichere Aufbauen und Verwalten von AD-Netzwerken sind in großen Or-
ganisationen kaum umsetzbar, da diese Lösung zeitaufwendig sein kann. Es zeigt sich, dass auch
Host-basierte Lösungen unzureichend sind. Daher stellt sich in dieser Arbeit die Frage, wie un-
erwünschte Konfigurationen in Sitzungs- und Berechtigungs-Graphen gefunden werden können,
um Gegenmaßnahmen einzuleiten. Das Hauptziel der vorgestellten Lösung ist die Verbesserung
der Netzwerksicherheit und vor allem das Verringern der Risiken von Identity Snowball Attacks.

Diese Arbeit beschreibt typische Verhaltensweisen von Angreifern bei Identity Snowball Attacks.
Dabei werden Konfigurationen konstruiert, die potenziell ungewollt sind. Diese Konfigurationen
bestehen aus Substrukturen innerhalb des Graphen, die vorteilhaft für den Angreifer sein und
dadurch die Ausführung von Identity Snowball Attacks unterstützen können. Es wird dargelegt,
wie diese Konfigurationen mit graphentheoretischen Metriken erkannt werden.

Anders als andere graphentheoretische Ansätze ist die vorgestellte Lösung fähig, Sitzungs- und
Berechtigungs-Graphen mit mehreren Zentralitätsmetriken zu analysieren: Degree Centrality,
Betweenness Centrality und Closeness Centrality. Die Effektivität der Lösung wird mithilfe von
zufällig generierten Graphen evaluiert. Dabei werden ungewollte Konfigurationen in diese Gra-
phen eingefügt. Es wird getestet, wie gut mit Zentralitätsmetriken vorher eingefügte, ungewollte
Konfigurationen im Graphen wieder gefunden werden können. Schlussendlich wird die Funktio-
nalität mit einem Graphen überprüft, der aus einem erheblich größerem realen AD-Netzwerk
stammt.

Es stellt sich heraus, dass die Lösung Organisationen ermöglicht, erfolgreich potenziell ungewoll-
te Konfigurationen mithilfe von Degree Centrality und Betweenness Centrality zu entdecken.
Im Gegensatz dazu war eine Erkennung mithilfe der Degree Centrality nicht möglich. Neben-
bei wurde beobachtet, dass die PageRank-Metrik übergreifend funktionieren könnte, da starke
Korrelationen mit Degree und Betweenness Centrality erkennbar sind. Weitere Forschung ist
notwendig, da es scheint, als wäre PageRank die effektivste Zentralitätsmetrik.
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Chapter 1

Introduction

In 2015 John Lambert described today’s challenges of defensive security teams and
thereby introduced an alternative perspective on network attacks [1]. The attacker’s
point of view is different from the defender’s perspective because the attacker pays
attention to relationships between assets while the defender deals with lists of assets
usually. Lambert paraphrases this imbalance with the title of a blog post:

"Defenders think in lists. Attackers think in graphs.
As long as this is true, attackers win."

Typical defensive activities in organizations often consist of limited protection tech-
niques [1]: Signature-based malware scanning, key-word based detection of phishing
emails, blocking IPs that belong to command and control networks and so on. Those
are protection strategies based on lists.

In the last years, several attacks point out that a deeper understanding of the attack-
ers’ behavior is necessary to deal with the risk of becoming a victim of such attacks.
Attacks have shown how offenders typically act, along with ransomware like BadRabbit
or NotPetya or the well-known DigiNotar hack [2, 3, 4]. Attackers try to further move
through the network after getting initial access to particular machines. All three above
mentioned examples of the last few years have shown this behavior and all of them
show traces to a tool called Mimikatz [5]. This software provides features that enable
the attacker to steal user credentials on an already compromised machine, i.e. they may
use them on other machines for further attacks in the network. Hence, the attacker
uses the permissions of a user to access another machine where the attacker may gain
more permissions via other users and so on. This quickly escalates as a kind of snowball
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system and ends in a large amount of compromised machines. Hence, such attacks are
called Identity Snowball Attacks.

1.1 Motivation

It must be a major goal to make it as difficult as possible for an attacker to use existing
sessions and permissions within a network for malicious purposes. There are several
points to reduce the attacker’s opportunities but it may be hard to implement solu-
tions. Stealing credentials may be avoided with host-based solutions but there are still
problems regarding the implementation within large organizations. Another approach
may be to systematically plan user and group permissions. In large organizations this
approach may end in high expenses due to complex organizational structures and a high
number of interested stakeholders. Detecting such attacks with Intrusion Detection Sys-
tems (IDSs) or Intrusion Prevention Systems (IPSs) may be difficult as well as normal
user traffic is hardly distinguishable from the attacker’s traffic.

As a result, large organizations do not have a sufficient solution to limit the risk of the
described attacks. However, despite such organizations have a focus on Microsoft Active
Directory (AD), the problem scope may be broader than such specific use cases. This is
why this thesis abstracts the specific problem of lateral movement within AD networks
to a more general problem to solve.

1.2 Research Question

There is little research about the analysis of network session and permission graphs.
The discovered related work have several disadvantages. Either high manual workload
is necessary or only particular graph metrics have been considered. This is why this
work builds a bridge between graph theory and computer networks regarding permission
structures. Therefore the treated research question is as follows:

How to find Undesired Configurations
in Network Session and Permission Graphs?

The hypothesis resulting therefrom is that it is possible to discover configurations that
may be beneficial regarding the attacker’s behavior. This means, we assume that at-
tackers show typical behaviors, that may be supported by particular topologies and
permission structures – so-called configurations – within the graph. Such potentially
undesired configurations are designed within this thesis by considering how they may
assist the attacker.

2



1.3 Outline

There are existing solutions to collect information about established sessions and exist-
ing permissions within a network. We use this information in order to do an analysis
from a central perspective. This is how components get detected within the graph, that
may be interesting for the analysis.

Answering the above mentioned research question may lead to an improvement of the
network security. The major goal is to narrow down opportunities for lateral movement
by contributing a solution based on graph-theoretic metrics.

1.3 Outline

This thesis is structured as follows. At the beginning, the Background (2) chapter
provides necessary foundations to understand the subsequent chapters. The next chap-
ter introduces Related Work (3) for later comparisons to the designed solution. The
Analysis (4) chapter analyses the scope of this thesis and examines various aspects of
the underlying problem. After that, the Design and Implementation (5) chapter
describes the solution design and realization, the Evaluation (6) chapter assesses how
well the solution operates in different environments.

3





Chapter 2

Background

This chapter presents background knowledge that is used within the thesis. Hence,
topics are covered that are strongly located in computer science like the possible ways of
authentication and attacks on computer networks. Second, other fields contain necessary
knowledge, like the graph-theoretical perspective on networks.

All along the history of computer networks, there is an accumulation of different possible
ways to represent computer networks in order to emphasize particular perspectives on
connected computers. This may be the perspective regarding the connections themselves
as well as regarding attacks by utilizing those connections.

2.1 Authentication Mechanisms

Before taking a look at particular network connections, it is necessary to have a glance
at basic authentication mechanism concepts. This is necessary in order to understand
the graph-theoretical depiction of permission structures afterwards.

There are several different methods of authentication. Today’s computer networks re-
quire authentication schemes in order to control who is able to access, modify and delete
which resources. All of them have in common that systems are in need of some sort of
credentials in order to authenticate a user. However, these schemes can be divided into
the categories of centralized authentication databases and decentralized databases.

First, the centralized approach means that there is exactly one particular database that
contains the credentials. This database needs to be queried in order to authenticate an
individual user. Second, there is a decentralized strategy. This approach means that
there are multiple locations to do authentications. That means that a user’s credentials
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need to be placed in order to access specific resources. A user is required to authenticate
against a database that maintains the access to those resources. If the access is granted,
the user may use that specific resource. Here, the disadvantage is that a user is required
to authenticate multiple times in order to access a particular resource.

There are hybrid forms of the centralized and of the decentralized authentication scheme
as well. Examples for them are Open ID Connect (OIDC) or Kerberos which operate in
a similar manner as similar strategies have been implemented. One example for those
strategies is the Single-Sign-On concept. This means that a user is in need of an initial
authentication against a fix authority. Afterwards, the user gets a successive secret in
the form of a ticket in Kerberos or some token in OIDC for instance. In OIDC the
responsive authority is called the OIDC Provider [6]. Kerberos uses the term Kerberos
Domain Controller as an authority to authenticate [7]. The thereby gotten secret can
be used for further authentication within the network. The user may use this secret to
authenticate against other services to access further resources.

The advantage of this hybrid form is that the services are allowed to focus on the resource
authorization. Hence, they are not responsible for authentication sequences anymore.
The downside of such systems is that it may be enough for an attacker to steal the
issued secrets. Afterwards the attacker may use this secret to act as the affected user.
The attacker may use all permissions with the achieved secret that originally have been
granted to the user.

2.2 Lateral Movement in Computer Networks

The drawbacks of the previously explained hybrid authentication may enable an attacker
to move forward within a network. This is an important step for an attacker since there
is a technique called Lateral Movement. It is a common attack technique and part of the
typical phases of a computer network attack [8]. There are helpful tools like Mimikatz,
that support an attacker in stealing user’s credentials. In the particular case of this
tool, the attacker can use it to extract a Kerberos ticket for instance. The attacker then
may use this ticket to access resources in the name of the victim. This may also include
the administrative access to further machines as well.

The MITRE corporation introduced the Framework to describe Adversarial Tactics,
Techniques and Common Knowledge after compromise (ATT&CK). This framework
states that Lateral Movement can be seen as the attacker’s activities in order to move
through the attacked network [8]. There are several counter measures against Lateral
Movement. On the one hand, there are protection mechanisms on the network level to
split networks from each other in order to prevent attackers from crossing it. On the

6
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other hand there are software tools that assist in the detection of attackers. Another
protection mechanism is to comply with the least privilege principle [9] in order to lower
the attacker’s opportunities regarding the exploitation of permissions, e.g. administrator
rights.

2.3 Active Directory

Microsoft developed AD as a collection of directory services to support an integrated
environment [10]. This environment allows organizations to maintain a virtual depiction
of itself. The directory services enable the organization to store and access information
like user accounts, groups and computers. Those data objects can be used in the daily
business and to ensure the technical operation of the network including the servers and
workstations.

One use case may be to grant administrative permissions of a user or group to a par-
ticular computer or to establish membership relationships regarding AD groups. For
instance, the DOMAIN ADMINS group can be used to maintain a set of users that allows
them to administrate the computers within the organization [11].

A central component of an AD network – of a so-called AD domain – is the Active
Directory Domain Controller (DC). There may be one or more DCs in form of Win-
dows servers that enable administrators to maintain the centrally stored objects within
the domain. Such objects are stored hierarchically and can be queried via network in-
terfaces, like the Lightweight Directory Access Protocol (LDAP) interface. LDAP is a
standardized protocol that allows to fetch that hierarchical information with the help
of filter queries [12, 13].

Another relevant principle within this thesis is the so-called Group Policy Object (GPO).
The GPO concept is used within AD domains to ensure the deployment of particular
configurations within a domain [14]. The deployment can be done on a regular basis in
order to distribute current settings onto all computers within the AD.

2.4 Information Gathering in Windows Domains

Major dependencies regarding this thesis are possible scanning techniques in Windows
networks. Typically, an attacker scans networks in order to collect information about
the network, its users, computers, and permissions. In the case of this thesis we need
to explain scanning opportunities.

7
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This gathering of information may be used out of a defensive perspective as meaning
scanning of the Windows network from a defender’s point of view. The advantage
of this option is that more information may be found out about the network, since
administrative access can be used for collecting information as well. The disadvantage
of this perspective is not that realistic compared to a real-world attack. Therefore it may
be interesting to scan the network in a black box manner, i.e. imitating the attacker’s
behavior. This approach may allow a more reasonable analysis regarding real-world
attacks, despite this means a smaller data set.

The following sections describe scanning techniques that are relevant concerning this
thesis.

2.4.1 Local Admin Enumeration
In Microsoft Windows every particular computer has its own local administrator group,
called Administrators. The members of this group have administrative access to the
local machine.

Microsoft Windows provides function calls based on the Windows API (formerly called
Win32 API). More specifically, the NETAPI32 provides the NetLocalGroupGetMembers
function to query group members of remote hosts [15]. The mentioned function consists
of multiple low-level remote calls via the MS-SAMR protocol, that has been specified by
Microsoft [16].

Particular Windows API calls require different authentication sequences. For the case
of the mentioned NetLocalGroupGetMembers function it is possible to call it anony-
mously, i.e. without any authentication. However, it is possible to restrict access to
authenticated users. This preference has to be set regarding the desired remote host in
the form of registry keys [17]. This can be done by editing registry keys directly on a
particular host or via the setting of GPO. There are several Security Options to edit in
order to restrict anonymous access within the entire Windows domain [18].

It is necessary to reach out to each and every computer to collect data for all described
options. Alternatively it is possible to scan in a stealth manner to collect information
about local admin groups [19]. To do this, information can be collected by querying the
DC only. This can only be achieved if the DC maintains local admin groups through the
entire domain by making use of GPOs. This might be slightly inaccurate, since GPOs
may get changed locally. Those changes cannot be determined because the DC does not
detect changes necessarily. Despite of this, GPOs may get deployed on a regular basis
and therefore overwrite changes.

8
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2.4.2 Session Enumeration
Data about established remote sessions are part of the data set used within this thesis
as well. This data can be collected in two different modes [19].

One possible way to gather session data is a Windows API function called NetSessionEnum
[20]. By invoking this function it is possible to fetch information about currently estab-
lished sessions on the remote host. It provides the source of the connection to the host
in the form of an IP address and the corresponding user that is logged in. This API
call is possible without any authentication mechanism [19].

The second way to collect information about established sessions is a similar Windows
API function called NetWkstaUserEnum [21]. This function call is more comfortable
than NetSessionEnum because it provides more information about the host and about
the user, e.g. the authenticating domain [19]. However, this invocation requires admin-
istrative privileges on the requested target hosts. Therefore using this function makes
sense only out of a defensive perspective or if the attacker achieved administrative per-
missions already. Furthermore, having administrator’s rights opens up the possibility
of using the registry of the remote host to collect further information.

2.4.3 Group Membership Collection
AD provides various service interfaces, among them there is also an LDAP interface.
LDAP queries are possible via this interface by using filters as specified with the LDAP
versions 2 and 3 (see RFC1777 and RFC3777) [22, 12, 13]. This interface may be used
for the collection of users, groups and computers that are stored as part of the AD
domain on a DC [19].

2.5 Centrality Metrics in Graph Theory

The sections before this one explained the practical background regarding Windows
networks. This part addresses a more theoretical piece within this work. As previously
mentioned, virtual relationships between users, groups and computers in an AD domain
can be collected (see Section 2.4 for further description). Those relationships may be
depicted with as a connected graph. This thesis is about the analysis of such graphs.
Therefore this section explains graph-theoretical concepts with respect to the analysis
of graph components.

In graph theory centrality metrics have been introduced to identify vertices with a
higher influence regarding a graph [23]. A large number of different algorithms is in use
for various applications. Originally centrality metrics popped up in the area of social

9
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networks. Thereby, those algorithms have been used in order to find persons that have a
higher social influence regarding their environment. Each metric is designed in order to
discover "central" vertices in different senses. Within this thesis, a few centrality metrics
are used and therefore the background needs to get explained within this chapter. This
section sums up introductory information about centrality metrics using an article called
"Centrality and Hubs" edited by Fornito et al. [23].

2.5.1 Degree Centrality
The first centrality metric presented is the Degree Centrality. It is defined as the amount
of neighbors and called node degree or vertex degree as well. Thus, the Degree Centrality
DC of a vertex i is defined as follows:

DC(i) = deg(i)

=
∑
i 6=j

Aij
(2.1)

deg(i) may be calculated with the help of an adjacency matrix A. The entries Aij in
this matrix 2.1 depict a connection between vertex i and vertex j. If there is a direct
edge between the vertices, the value is 1, otherwise it is set to 0. Therefore the sum
calculates the amount of connections from vertex i to other vertices. The higher the
DC of a vertex gets, the more direct neighbors are present.

2.5.2 Betweenness Centrality
The Betweenness Centrality score calculates the amount of shortest paths a vertex lies
on. The equation 2.2 shows how this metric operates.

BC(i) = 1
(N − 1)(N − 2)

∑
h6=i,h 6=j,j 6=i

ρhj(i)
ρhj

(2.2)

ρhj(i) is the amount of shortest paths between vertices h and j that cross vertex i.
Below ρhj is the number of shortest paths between h and j. Therefore, the ratio between
shortest paths that include i and the total amount of shortest paths gets calculated.
This value gets divided (N − 1)(N − 2) which is the amount of vertex pairs without
vertex i.

Therefore the Betweenness Centrality score is a metric that shows how deep a vertex is
connected within the graph regarding the amount of shortest paths the vertex lies on.
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2.5.3 Closeness Centrality
The Closeness Centrality may be described as a metric that shows how close a vertex is
to all other vertices within the graph. Therefore this metric is the inverse of the average
amount of steps on the shortest path to all vertices.

Equation 2.3 defines the normalized Closeness Centrality for a vector i.

CC(i) = N − 1∑
j 6=i lij

(2.3)

Thus, CC is calculated by taking the total amount of vertices N without vertex i. All
shortest path lengths lij between vertex i and j are summed up in order to calculate
the average closeness to all other vertices within the graph.
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Related Work

This chapter introduces two approaches that have been developed in the past by other
organizations. The Heat-ray project [24] as well as the BloodHound project [25] designed
different approaches that enable an organization to discover undesired configurations
within an AD network. The following sections explain their strategies in detail. A
comparison to our solution can be found in Section 6.5.

3.1 Heat-ray

Dunagan et al. developed a system called Heat-ray to combat attacker’s Lateral Move-
ment within AD networks [24]. Within this context they introduced the term Identity
Snowball Attack as well. This section explains the underlying concept they developed.

Figure 3.1: Example for a network session and permission graph [24]

The system developed by Dunagan et al. is based on machine learning techniques and
combinatorial optimization. Specifically they make use of attack graphs as can be seen
in Figure 3.1.
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3.1.1 Identity Snowball Attacks
The term "Lateral Movement" is defined as follows for the remainder of this thesis, unless
explicitly stated otherwise. This thesis is about the traversal of permission structures,
meaning that the attacker is assumed wandering through the permission graph in a
virtual manner. This kind of Lateral Movement is called Identity Snowball Attack in
the context of the Heat-ray project [24, 26]. Those virtual movements still may end in
the compromise of further computers within the network. This is because the attacker
may exploit the permission structures as explained in 3.2.1.

Figure 3.1 shows an example for a permission graph as used by Dunagan et al. [24].
If the attacker compromised the computer Alice-Desktop, the attacker may use every
permission of Alice since Alice is logged in on that machine. Thus the attacker is able
to use Alice’ identity to log in onto Alice-Laptop and Heatray-Test-PC as well.

3.1.2 Iterative Heat-ray Process
Dunagan et al. defined the following iterative process. This section explains the meaning
of the particular steps.

1. Execution of sparsest cut algorithm

2. Group and rank edges

3. Assessment by IT administrators

4. Execution of a Machine Learning algorithm to deduce edge costs

In Step 1 the sparsest cut algorithm is executed on the existing graph. This algorithm
tries to find the smallest set of edges, whereby a removal of them results in two separate
graph components. Both components shall be as large as possible. This set of edges
may be found with a combinatorial optimization technique as defined by the Heat-ray
authors. Basically, two different values take effect on the chosen set of edges – the edges’
benefit and the cost of removing it.

The benefit is derived from the amount of shortest paths that pass the edge, meaning
that the benefit of cutting this edge is higher. This is because the probability of a passing
attacker (during the lateral movement) may be higher for those nodes. Therefore, it
makes sense to cut those edges. The problem with this value is that the deletion of
some edges may cause more problems than the deletion of other edges. This might be
the case if the effort to delete an edge is lower than deleting another one. This is where
the edge costs come into play. However, get changed at a later point in the Heat-ray
process. The lower the edge costs are and the higher the benefit is, the better it would
be to propose the deletion of an edge.
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Step 2 has been inserted to support the system administrator in the next step. This
step allows the system administrator to make less decisions that take effect on multiple
nodes at the same time. The system administrator has to decide whether a group of
edges should be cut or whether it should be kept (see Step 3).

This decision influences Step 4 where a Machine Learning algorithm uses the adminis-
trator’s feedback to set edge costs through the entire graph. This is necessary since it
would be too much effort to set the costs for all edges in a manual manner.

In summary, Heat-ray uses the feedback of an IT administrator and fitting edges in
order to cut a network session and permission graph into components that are as large
as possible. This ends in a more loosely connected graph, whereby an attacker has little
opportunities to access further large graph components. This is how Heat-ray tries
to decrease the amount of configurations within the graph that are beneficial to the
attacker. At the same time Heat-ray tries to decrease the effort that an IT administrator
has to achieve the before-mentioned cutting of the graph.

3.2 BloodHound

Vazarkar et al. introduced tools as part of a project called BloodHound AD [25, 27,
28]. The tool set consists of SharpHound to scan AD domains, the BloodHound user
interface to analyze the data and DBCreator to randomly generate test data. In general,
the goal of the BloodHound project is to provide software to reveal potentially insecure
configurations within AD networks. The approach relies on the IT administrator’s abil-
ity to manually check crucial paths with the help of BloodHound. Those configurations
need to be checked by some security team in order to assess appropriate changes to the
configuration.

3.2.1 Scanning with SharpHound
It is possible to gather data via several interfaces in Windows networks as explained
in Section 2.4. Those interfaces are utilized by SharpHound. SharpHound is the latest
implementation of the available ingestors, as the BloodHound AD developers call their
data collectors. In general, ingestors collect information about the Windows network to
insert it into the Neo4j database as nodes and relationships.

Thereby SharpHound creates different kinds of nodes, that are differentiated by using
the following distinguishable node labels: Computer, Group, User. This means, that
for every computer, group and user one node will be created. Those nodes will get
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connected with various relationships depending on the results of the scans explained in
Section 2.4.

The following table explains the source and meaning of each relationship type. SharpHound
persists each relationship as a directed edge in order to generate an entire graph of the
AD network.

Type Source Meaning Source node(s) Sink node(s)
has-session Local computer Currently established user Computer User

(session enumeration) sessions of a computer
member-of DC LDAP Group memberships User, Group Group

of groups and users
admin-to Local computer Local administrative rights User, Group Computer

(group enumeration)

Table 3.1: SharpHound relationship types

As can be seen in Table 3.1, the Win32 API of the local machines provide information
about established sessions (has-session) and group memberships of the local admin
group (admin-to). The DC is to be queried by SharpHound regarding domain group
memberships (member-of) because such relationships are stored centrally within the
AD.

3.2.2 BloodHound Analysis User Interface
Vazarkar et al. developed a tool called BloodHound that enables the analysis of
SharpHound permission graphs [25]. Afterwards the BloodHound application may be
used to analyze the existing graph. The BloodHound project provides the tool in the
form of a graphical user interface for the analysis of the generated graph. It can be used
for investigations regarding particular nodes or to search for node-driven or context-
specific characteristics. Examples for those queries would be:

• Find all AD domain administrators!

• Find the shortest path(s) between two specific nodes!

BloodHound may be applied by offensive and defensive security teams. One possible
case may be to map the network with SharpHound and then to use BloodHound to
understand or analyze the permission structure within the AD [29]. Defensive security
teams may be interested in the defensive perspective especially [30]. They are able to
do risk auditing through the AD network with BloodHound. Viewing possible attack
paths enables them to gain a better understanding of the attacker’s perspective onto
the network. Furthermore, those analysis techniques may be beneficial regarding the
mitigation of discovered risks.
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3.2.3 DBCreator
The BloodHound developers implemented a tool called DBCreator in order to test use
cases of the BloodHound Analysis User Interface [28]. It consists of a script that dynam-
ically creates graphs that depicts fictional Windows network environments. The tool
may randomly create graphs that shall be as similar to a real-world AD environment as
possible. The thereby generated data can be used as an alternative data source to test
the BloodHound Analysis User Interface or to test other analysis platforms. The size
of the generated database can be set as a parameter. Nodes and relationships between
them are generated in the same way as explained in Section 3.2.1 for the SharpHound
ingestor (see Table 3.1).

The generated graphs created by the DBCreator show up with similar structures because
the developers tried to simulate real-world environments as accurate as possible. This
ends in rather similar structures, e.g. security groups are generated for IT departments
with a number of employees. Hence, the graphs have similarities from a graph-theoretic
perspective. Thereby, it is not possible to generate totally random graphs, since these
graphs are used to test the functionality of the BloodHound analysis tool that is built
for real-world environments. This means that typical characteristics of organizations
still show up in the random graphs, but the concrete structures are randomly chosen.
This ends in graphs that still contain rather real-looking organization structures.
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Analysis

This chapter describes the fundamental problem treated within this thesis and several
possible approaches to tackle the problem. At the end of the chapter, the requirements
for our solution are defined. This is followed by an analysis of the attacker’s behavior
at the end of this chapter.

4.1 Problem Statement

The major objective of this thesis is to prevent Identity Snowball Attacks. This type
of attack has been defined within the Heat-ray project as described in Section 3.1.1.
This term depicts a special kind of Lateral Movement where the movement refers to the
usage of a network session and permission graph.

Within this thesis the treated problem can be divided into a general problem and a
specific use case. The general problem is the prevention of Identity Snowball Attacks
regarding network session and permission graphs. The specific use case are Identity
Snowball Attacks regarding AD infrastructures.

We assume that the specific use case can be generalized so that the later introduced
solution can be applied to prevent Identity Snowball Attacks on all permission graphs.

Security-Aware Design 
of Role-Based Access

Control 

Graph-Theoretic
Approach

Intrusion Prevention 
and Detection 

Figure 4.1: Temporal classification of our approach
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The reason for this is that the used graph within this thesis can be generated for other
specific use cases in a similar structure.

Figure 4.1 shows points in time where it may be possible to apply measures in order to
prevent or detect Identity Snowball Attacks. The following sections give more detailed
descriptions of the depicted points and possible countermeasures. Furthermore, the
reasons for the final decision regarding the Graph-Theoretic Approach becomes more
clear.

4.2 Security-Aware Design of Role-Based Access Con-
trol

The access to data within an organization is controlled with a permission system typ-
ically. For instance, such a system controls which users or groups may have adminis-
trative permissions on resources. Microsoft reflected this concept by using AD together
with specific permission schemes. Within the concepts Microsoft made use of Role-Based
Access Control (RBAC).

Regarding AD domains, this means that the permission data is located on various
resources. Therefore this data is maintained in a decentralized manner – parts are
located on DCs or even on workstations.

However, this data may be collected in order to persist it as a connected permission
graph in a database. One opportunity to avoid Identity Snowball Attacks is to tackle
the problem during the construction of the permission graph. The first point to take a
look at is the initial planning phase of the permission graph. The second point in time
to consider is to permanently alter the existing graph.

In order to avoid Identity Snowball Attacks it is necessary to pay attention on the
built sub-structures. This becomes a very complex task in large organizations with
high amounts of computers, groups and users. On the one hand, there are more than
one authority that takes care of the administration of the entirety of the organizational
permission patterns. This makes it difficult because of diverse requirements and lots
of necessary communication. On the other hand, changes within the graph happen in
a fast manner. Typically many activities happen in a short time like granting permis-
sions, creation of new users or the modification of group memberships. A typical user or
administrator is not able to access the whole permission structure because of organiza-
tional structures or security measures. These rapid changes out of a "local perspective"
within the graph make a security-aware design of RBAC difficult.

20



4.3 Intrusion Prevention and Detection

4.3 Intrusion Prevention and Detection

This section refers to the third circle in Figure 4.1. First, there are tools to detect or
prevent the exploitation of vulnerabilities in the form of host-based security measures.
Furthermore there are network-based approaches to mitigate the problem of Identity
Snowball Attacks with the aid of IDS/IPS.

4.3.1 Host-Based Security Measures
There are several security measures that can be done directly on the specific host within
the network. Thus attackers need to take further steps in order to circumvent those
measures. One possible solution regarding this thesis would be using the software Win-
dows Defender Credential Guard [31]. This tool has been released by Microsoft in order
to protect the system from Pass the Hash attacks [32]. The developers of the tool
Mimikatz are able to steal credentials and reacted with additional features in order to
bypass Microsoft’s protecting tool [33].

There are still additional problems with using the Windows Defender Credential Guard
on all Windows computers. It is necessary to set the Hyper-V flag on all machines in
order to get Windows Defender Credential Guard working. This is possible only if no
other virtualization technology (like VirtualBox or VMWare) needs to be used on that
machine without continuously (un)setting the flag and rebooting the machine [34].

On the other hand there are restrictions concerning the requirements of the Windows
Defender Credential Guard [35]. The software is deployable on Windows 10 and Win-
dows Server 2016 only. Therefore it is currently impossible to use it within heterogeneous
networks consisting of machines with other Windows versions installed.

Summarizing the above, it can be said that host-based measures are not always sufficient.
They can be effective on a subset of all machines but they cannot ensure protection for
the whole network.

4.3.2 Network-Based Security Measures
Identity Snowball Attacks exploit normal user permissions as explained in Section 3.1.1.
Permissions that are already existing are used in order to access other computers within
the network. This is the case not only for Active Directory, but for other systems that
are built up on similar permission systems. Differentiating malign and benign network
traffic is a complex task because there is a variety of different protocols that need to
be supported. Furthermore it is difficult to identify an attacker’s traffic if the attacker
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makes use of normal user API calls. This is why detecting attacks with network-based
security measures is difficult.

The analysis of such high-level protocols gets even harder if the associated protocols
are encrypted. Further problems arise if logging mechanisms are distributed through
multiple machines within the network. This means that distinguishing user and attacker
behavior requires a central evaluation of all activity logs.

4.4 Graph-Theoretic Approach

In summary, it can therefore be said that a security-aware design of the permission graph
is hard to achieve in the described environment. The stated approaches regarding live
detection/prevention cannot be deployed widely as well because of the heterogeneous
nature and complexity of the network. This shows that the most profitable approach
for a solution may be in order to analyze the permission graph.

This results in the advantage of a centralized approach. Thereby, the analysis is possible
at a central point without the necessity of time-consuming communication with affected
stakeholders. Another advantage is the possibility of using the scanning tools developed
by the BloodHound project (see Section 3.2.1).

4.4.1 Investigation Process
Our solution relies on the previously described graph built by SharpHound (see Section
3.2.1). We make use of those graphs within a novel process that is to be described in
this section.

IT security teams are in need of a process in order to secure permission graphs to avoid
Identity Snowball Attacks, e.g. in the case of AD networks. We suggest to establish the
following steps as an integrated process to solve this problem.

1. Scanning

2. Graph-Theoretic Analysis

3. Evaluation of Results

At Step 1 a scan needs to be executed in order to collect and persist the graph data as
described in Section 3.2.1. Within Step 2 a graph-theoretic analysis of the existing graph
needs to be invoked. The analysis results in the proposal of graph sub-structures that
depict potentially undesired configurations. The security team needs to evaluate those
proposals in Step 3. This is necessary in order to determine the next steps regarding
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Corporate
Active Directory
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Neo4jAnalysis Platform
Identify

sub-graphs (4)

Figure 4.2: Technical perspective of the investigation process Steps 1 and 2

the particular sub-structures. Possible reactions may be the deletion or modification of
a graph substructure.

The focus of this thesis is on Step 2 of the investigation process. Thereby concepts
need to be developed in order to analyze the graph in a way that allows the proposal of
potentially undesired substructures. Therefore we want to find substructures that may
favor the behavior of an attacker. Learning about such substructures enables security
teams to initiate subsequent actions to reduce the risk of Identity Snowball Attacks.

Figure 4.2 depicts the chronological sequence of Step 1 and Step 2 from a technical
perspective. Thereby the process is applied onto an AD network. First, the AD networks
needs to be scanned (1) in order to persist the data in a graph database (2). Afterwards
the analysis platform searches the graph for undesired substructures (3) in order to
propose them to the security team (4). The dotted box in the lower part of Figure
4.2 depicts the scope of this thesis according to Step 2 of the investigation process.
Therefore, the focus is set on the last part of the depicted diagram in figure 4.2.

4.4.2 Requirements
The primary problem to solve within this thesis is to identify undesired configurations
within permission graphs. Hence, this section describes the requirements for the wanted
solution at first. Afterwards, we introduce undesired graph configurations by making
use of centrality metrics.

At first, there are two more general non-functional requirements. The solution to be
developed needs to be fast enough to use it in the iterative process described before
in Section 4.4.1. This means that Step 2 needs to be fast enough to use the tool
interactively. The security team should be able to start the graph-theoretic analysis
within the process as a day-to-day habit. Hence, the resulting requirement is a fast
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Figure 4.3: Use Case Diagram

execution time, so that the security team is able to do the analysis in a short amount
of time. Afterwards the team is ready to start with the result evaluation in Step 3
of the investigation process. Therefore, the non-functional requirement is that the
solution should be applicable for graphs collected in large organizations. This requires
the software to efficiently process large amounts of data in a short time.

Another non-functional requirement is that the solution may be applied to general
network session and permission graphs. As mentioned before, the specific problem
regarding this thesis relates to AD domains. Hence, the collected and generated graphs
within this thesis are biased with AD structures. However, each and every consideration
is done with the background of general network session and permission graphs, but not
AD networks only. Therefore, the hereby designed strategies including all algorithms
can be applied to general graphs.

Figure 4.3 shows the stakeholders that take part in the process described in Section 4.4.1.
This thesis puts emphasis on functionality that has to do with the analysis procedure
especially. In the following sections we define the specific requirements of the wanted
solution.

Sub-Structure Proposals
As mentioned before, we need to identify undesired graph substructures to the security
team. We use the term undesired substructure in order to describe structures within
the graph that favor the attacker’s behavior. If an attacker benefits from the particular
constellation within the graph. The main goal within this thesis is to define such
constellations and to find a way to find them in a fully-automated manner.
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Static Blacklisting
There are some cases in network session and permission graphs that require the exclusion
of substructures from the analysis process. We identified two cases that enforced such
exclusions.

First, there may be undesired substructures within the graph due to technical reasons.
On the one hand, one may argue that such substructures shall be proposed because
they are declared to be undesired. On the other hand, we need to avoid such proposals
in the output of the analysis to avoid obvious results. One example for this kind of
substructures to be blacklisted is the DOMAIN ADMINS group within an AD network (see
Section 2.3). This node needs to be declared to maintain the group of users that have
administrative permissions throughout the entire AD domain.

Second, there may be organizational reasons for particular substructures. For instance,
it is possible to map organizational structures onto permission graphs. In the case of
AD it may be appropriate to construct tree structures to construct pyramidally set up
divisions or departments. Especially nodes that lie on top of such structures may seem
like undesired configurations at a first glance. Security teams may want to exclude such
nodes despite of that because these substructures are well-known already.

These two types of undesired substructures need to be blacklisted to exclude them
during the analysis procedure.

Dynamic Blacklisting
There is an additional kind of blacklisting technique. Other than the static blacklisting
method, it is necessary to exclude substructures in a more dynamic way. With the
static blacklisting it is possible to exclude explicitly defined nodes for instance. The
goal of the dynamic blacklisting is to exclude more complex substructures that need to
be defined in an agile manner. Within an AD network it may be interesting to exclude
whole groups with its members for instance. One example may be the exclusion of not
only the DOMAIN ADMINS group but all members (therefore all admin users)

Randomly Generated Graphs
In order to evaluate whether the described requirement in 4.4.2 works well, we need
to generate random graphs. Another reason is that during this thesis we do not have
access to a large number of real-world graphs. The following chapters describe how
random graphs are used to test our solution. Therefore those random graphs need to
be as similar as possible in regards to real environments. Those graphs are necessary to
check whether graph substructures can be found as expected.
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Injection of Subgraphs
As described earlier the major objectives of this thesis is to find undesired substructures
in graphs. Therefore, it is an advantage to synthetically construct undesired substruc-
tures. Those subgraphs can be seen as examples for undesired substructures that we
want to find in real graphs.

There are two use cases for the injection of subgraphs in order to evaluate our approach
and solution. First, undesired substructures need to be injected into randomly generated
graphs (as described in Section 4.4.2). Second, the same substructures are injected into
a real-world graph. This is how we test our solution in order to ensure that similar
undesired substructures are detected by our approach.

4.4.3 Attacker’s Behavior
This section states how different forms of graph configurations may have different effects
on the attacker. We assume that undesired graph configurations favor the attacker’s
opportunities regarding Lateral Movement. Therefore we describe attacker behaviors in
order to reflect attacker-friendly configurations.

The following sections describe assumed behaviors of attackers. Those behaviors are
matched onto metrics in order to find undesired configurations within the graph. Out
of a defensive perspective, those metrics are used to assess the risk of compromise of
individual nodes. We present one example per metric with a figure where users are
depicted as purple circles. Groups are depicted as blue and computers as orange circles.

The metrics defined in Section 2.5 may be used despite they are introduced as metrics for
undirected graphs. The directions of the relationships are irrelevant since the attacker
profits from each direction of the relationships.

Direct Neighbors of Particular Nodes
As explained in Section 2.5.1 the Degree Centrality represents the amount of direct
neighbors of a node. Therefore there are two cases where this centrality metric seems
interesting in comparison to the attacker’s behavior.

• On the one hand a node is interesting for an attacker if the attacker has information
about the environment of a node. The attacker profits the most of such a node if
multiple nodes are wanted as the final target. First, it is possible to use a node
with a high Degree Centrality to reach the mentioned targets initially. Second,
the attacker may stay at this node in order to keep it as a profitable starting point
for future activities.
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• On the other hand, an attacker who does not have any information about the
network may do a random walk through the graph. Therefore the probability of
the attacker reaching a node with a high Degree Centrality is more likely. This
applies particularly from a local perspective since the direct neighbors have lower
scores. Additionally it is more likely that an attacker compromises more nodes
directly after a nodes with a high Degree Centrality since there are more direct
neighbors.

Those two cases indicate that nodes with a higher Degree Centrality score are more
likely to be undesired substructures than nodes with lower scores.
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Figure 4.4: Example graph with calculated Degree Centrality (DC) per node

Figure 4.4 shows an example graph with the associated Degree Centrality scores (DC).
This and all following figures of this type shows users as purple, groups as blue and
computers as orange circles. The red dotted boxes frame nodes that obtain the same
scores.

Out of a local perspective it can be deduced that stealing the identity of User U1 is more
favorable for the attacker than the user U3 for instance. This can be ascribed to the
fact that U1 has administrative permissions on computer C1 and is a member of group
G1 at the same time. Therefore the attacker’s profit is higher in contrast to U3.

Out of a global perspective it is more likely that an attacker passes U1 than U3 by
doing a random walk. This is because there are more paths where the attacker may
use the identity of U1. Furthermore the attacker is able to use more paths in order to
compromise more nodes afterwards.

Thus Degree Centrality may be used in order to find potentially undesired nodes within
the graph.
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Nodes on the Attacker’s Path
We assume that nodes have a higher probability of compromise if they lie on many
shortest paths within the graph. The affected algorithm to measure this metric is called
Betweenness Centrality as explained in Section 2.5.2. Dunagan et al. use the same
metric with a similar reasoning (see 3.1).

We argue that nodes with higher Betweenness Centrality scores have a higher chance
of getting compromised because of two reasons.

• In graph-theory a higher Betweenness Centrality means that the node lies on many
shortest paths between two nodes within the graph. Regarding an attacker this
means that the probability of passing such a node is higher than passing a node
with a lower score. This reasoning works, regardless whether the attacker does
a random walk or with a specific target. The higher the score, the higher the
probability of a node getting compromised.

• There is still another perspective regarding a higher score of a node. A high
Betweenness Centrality implies that there are many possible shortest paths to the
node itself. Therefore the risk regarding such a node is higher because an attacker
has more opportunities to reach that particular node.

In Figure 4.5 one may recognize that group G3 is in possession of the highest Betweenness
Centrality (BC) score. This is because this node separates most of the nodes and
therefore lies on the shortest path between them. Group G1 is affected in a greater
extent in comparison to group G2 because G1 splits a higher amount of nodes within the
graph as can be seen.

Taking a look at the computers C3, C4, C5 and C6 show a contrasting situation. They
do not lie on any shortest paths of two other nodes within the graph and therefore do
have a score of 0. This does not mean that no risk stems from those nodes, but the
Betweenness Centrality metric brings no advantages regarding them.
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Closeness to the Attacker
The last example in Section 4.4.3 states an example where Betweenness Centrality is an
inappropriate metric to find the mentioned computers. Figure 4.5 shows that the score
of C3, C4, C5 and C6 is very low. Still, we assume that those nodes have a greater risk
of getting compromised than other structures within the graph for the following reason:
Those nodes do not lie directly on paths that may be used by an attacker probably.
Even though we assume them being at risk because group C3 is a direct neighbor with
a high Betweenness Centrality apparently. This case may be covered with an additional
centrality metric called Closeness Centrality.

In Figure 4.6 can be seen that the Closeness Centrality (CC) score of C3, C4, C5 and
C6 is higher than the score of other leaf nodes like C1 or C2. Even stronger integrated
nodes like users U1 or U2 obtain lower scores because the discussed nodes are integrated
in a stronger manner and therefore they are closer to other nodes.

There are two perspectives to be noted again regarding the risk of compromise.

• First, a node is more likely to get compromised if a node lies close to other nodes
that are compromised already. Therefore a higher Closeness Centrality score
means that a randomly walking attacker is more likely to reach that node on
the future way through the graph. Hence, the node is at greater risk regarding
soon-to-be compromising.

• Second, a node with a higher score presents greater risk if it is compromised
already. The increased Closeness Centrality score is to be understood as a higher
risk for other non-compromised nodes since the compromised one is closer at an
average.

Thus, a higher Closeness Centrality score is seen as an indicator for nodes that represent
higher risk than nodes with lower scores.
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Chapter 5

Design and Implementation

This chapter provides an overview of how this thesis tackles the previously analyzed
problem of finding undesired configurations.

Metric scores

Lateral Movement
definition

Anomalies/Threats

Network and
Permission Graphs apply graph metrics

interpret regardinggraph theory
detect undesired

configurations

Figure 5.1: Methodology of this thesis

Figure 5.1 shows how the following sections combine the previously explained concepts.
On the one hand, the previous chapters explain the definition of lateral movement can
be put in the context of network session and permission graphs. On the other hand,
Chapter 4 describes how graph analysis may be used to expose anomalies within the
graph. Figure 5.1 visualizes those concepts to explain the terminology. Graph metrics
need to get applied onto the graph to interpret the scores in order to discover undesired
configurations. Within the scope of lateral movement, those undesired configurations
may be beneficial regarding the attacker’s behavior. Hence, this strategy may expose
anomalies and therefore threats to particular sub-structures of the graph.

This chapter describes how the developed solution makes use of the previously analyzed
concepts. Subsequently, the designed architecture is described and thus bridges the gap
to the applied methodology.
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5.1 Analysis Platform Components

This section presents an overview of the concept of our solution. There are several
steps necessary in order to propose undesired sub-graph structures. In the following we
describe the individual modules within the analysis platform.

GraphPreprocessor

MetricsGenerator

GraphAnalyzerGraph Nodes

Node Blacklist

(1)

(3)

(5)

(4)

(8)

(6)

(7)

StructureInjector (2)

Figure 5.2: Analysis Platform

5.1.1 Graph Preprocessing
The GraphPreprocessor module prepares the graph contents. There are some nodes
and relationships depending on the source of the graph that need to be deleted before
the generation of metrics (see (1) in Figure 5.2). Initially the graph may contain nodes
or relationships that are not wanted. In some cases the GraphPreprocessor is relevant
since the subsequent metrics may be disrupted. The only relevant structures within the
scope of this thesis are the mentioned nodes and relationships in 3.2.1.

Within this thesis we make use of graphs that are the result of the scanning of AD
networks with SharpHound (see Section 3.2.1). Before, we explained the relationships
that are relevant for this thesis in Table 3.1. SharpHound creates other relationships
of other types that are not appropriate to use with regards to graph-theoretic metrics.
In this work we make use of the mentioned edge types exclusively. Those additional
relationship types are created by the DBCreator script as well (see section in 3.2.3).
This is why we need to delete disturbing relationships with the GraphPreprocessor
module.
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5.2 Graph Analysis Methodology

5.1.2 Injection of Undesired Structures
The StructureInjector is used during the testing phase of metrics. It can be uti-
lized to inject undesired sub-structures into the existing graph (see (2) in Figure 5.2)
before the generation of metrics take place (see (3) in the diagram). Afterwards one
can check whether the previously injected sub-structures can be found by using the
GraphAnalyzer module (see Section 5.1.4).

5.1.3 Metric Score Annotation
The MetricsGenerator module applies graph metrics to the graph and therefore it
annotates every node with the particular metric score for that specific node (see (3)
in the diagram). This module is flexible regarding the usage of particular graph met-
ric algorithms. Within the scope of this thesis we make use of the graph algorithms
described in 2.5. The only requirement of subsequent analysis algorithms is that the
metric algorithm is needed to annotate every individual node with the belonging metric
score value.

5.1.4 Analysis of Metric Scores
The actual analysis happens within the GraphAnalyzer module (see (4) in Figure 5.2).
Usually this module returns nodes as a result (see (6) in Figure 5.2). On the one hand,
those nodes may be part of the identified sub-structures as described in the requirements
(see 4.4.2). On the other hand, those nodes can be used for further processing (see (7)
in Figure 5.2). Even the GraphAnalyzer itself is able to process resulting nodes again
in order to furthermore analyze the graph (see (8) in 5.2).

This module is able to blacklist a set of nodes (see (5) in Figure 5.2). This enables the
GraphAnalyzer to ignore those nodes in order to avoid them to appear in the returned
node lists in the following iterations.

5.2 Graph Analysis Methodology

This section introduces the used methodology regarding the analysis of the network
session and permission graph. Hereby, the previously explained modules are combined
in a way that allows to analyze a graph regarding potentially undesired configurations.

5.2.1 Top Lists
As explained in Section 4.4.3, the graph-theoretic metrics may be used in order to
discover potentially undesired configurations. All introduced centrality metrics result
in higher scores when a node has a higher potential of being part of an undesired
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configuration. Therefore, it is an appropriate solution to fetch a list of nodes from the
database. Each of those lists need to be ordered descending by the particular metric
score.

Within this thesis, the most interesting nodes are nodes with unusually high scores.
The investigation process in Section 4.4.1 requires further assessment of those nodes.
Hence, the top scores of each metric is interesting for a further investigation. The
implemented solution supports this in two strategies. The first is to query a defined
amount of nodes. This approach makes sense if the underlying graph has a fixed size,
meaning a particular amount of nodes and relationships. This is not the case necessarily
since the size depends on the organizational structure and type of the organization.

Therefore, the designed solution supports a second more dynamic strategy additionally
to the described static one. This means that the amount of nodes does not need to be
specified. Instead, this value is replaced with the percentage of top scores. Hence, it is
possible to fetch the top nodes that exceed a particular percentile regarding a centrality
metric.

Before querying the top nodes (statically as well as dynamically), nodes may be defined
as blacklisted. The next section describes how those blacklists may be applied.

5.2.2 Blacklisting
We make use of two fundamentally different blacklisting methods. The first of them
utilizes statically defined blacklists. They are set up in order to block particular nodes
within the graph. Those nodes need to be described explicitly tailored for the very
organization. There are still a few groups that need to be ignored as stated in the
requirements (see 4.4.2). However, there may be nodes that need to be ignored in
multiple organizations.

The second blacklisting method is used to ignore kinds of nodes that need to be defined
in more complex way. As described in the requirements (see 4.4.2) there may be nodes
where it is impossible to declare them explicitly. For those nodes it is necessary to
exclude them based on relationships to common nodes. Hereby we use the common
semantic context to blacklist nodes in a dynamic way.

5.2.3 Graphical Analysis with Histograms
The static and dynamic blacklists explained in Section 5.2.1 provide the opportunity to
identify the nodes with the highest scores with respect to particular metrics. However, it
is still unclear whether those nodes are part of potentially undesired configurations. For
instance, there may be a graph where all nodes are assigned with equal metric scores.
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5.2 Graph Analysis Methodology

According to the reasoning given with this thesis, all nodes within this graph may be
or may be no part of an undesired configuration. It would be impossible to discover
extraordinary structures with the help of centrality metrics. This is the reason for an
additional analysis strategy that needs to get applied within the investigation process.

Histograms are used to identify outliers regarding particular metrics. Later in the
evaluation chapter, those histograms are used to get a feeling for the distribution of
metric scores. Especially logarithmically scaled histograms are a comprehensive tool to
find outliers with particularly high scores. Large piles of equally high scores are assumed
to be part of usual structures within the assessed graph. The same applies for larger
ranges of scores where nodes pop-up evenly distributed. The situation is different if
a large amount of nodes reside with relatively low scores and a few nodes have high
scores. This leads to the assumption that the latter ones have a higher probability of
being part of an undesired configuration with respect to the defined attacker’s behavior.
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Chapter 6

Evaluation

In this chapter we follow two approaches in order to evaluate the solution described in
Chapter 5. The first part of the evaluation is based on randomly created permission
graphs to discover undesired configurations. The second part involves a real-world
network that is scanned in order to get a real network session and permission graph. In
both cases we compare the results with the requirements in Section 4.4.2.

6.1 Evaluation Environments

We want to introduce both environments used to evaluate the described solution.

6.1.1 Randomly Generated Graphs
During the development phase the DBCreator tool is used that has been developed as
part of the BloodHound project (see Section 3.2.3). The following sequence shows the
first approach to evaluate our solution:

1. Randomly generate graphs

2. Design undesired configuration

3. Inject undesired configuration into graph

4. Find undesired configuration again

In Step 1 a random graph needs to be generated. We make use of the DBCreator script
for this. As described in Section 5.1.1, it is necessary to execute the GraphPreprocessor.
Afterwards a particular undesired configuration needs to get designed in Step 2 by
creating a graph sub-structure. This configuration gets injected within Step 3 into the
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randomly generated graph as described in Section 5.1.2. In Step 4 the described solution
is used to find the previously injected configuration again.

6.1.2 Real-World Graphs
The second evaluation environment concerns real-world graphs. This evaluation is done
according to the process defined in Section 4.4.1.

The impediment regarding this evaluation strategy is that it is difficult to know whether
the detected configuration is actually undesired or not. We cannot find any solution to
do such predictions on the findings. This is why we carried out discussions with experts
within the organization in order to evaluate the meaningfulness of our results.

6.2 Evaluation of Effectiveness

As part of this thesis a framework is developed that makes it easy to arrange and
inject undesired configurations. During the analysis chapter, the requirements for our
solution are explained more precisely. The main features are the definition, injection
and afterwards also the detection of undesired configurations.

This section describes how different configurations are designed to check the functional-
ity of our solution. Therefore, we use the DBCreator of the BloodHound project to check
whether our solution works on their random graphs. We point out that the generated
graphs show up with similarities due to the attempt of creating realistic graphs (see
Section 3.2.3). The tool generates random graphs with predefined specifications, e.g. a
graph always contains an IT department and administrators. Such schemes need to be
followed in order to simulate an AD graph of a real organization. This is the reason,
why the following sections contain average results. The generated graphs show up with
hardly distinguishable results regarding injected sub-structures. Hence, the results are
deduced from three experiments each. The results are calculated as the average value
of those three experiments each.

The used workflow for the simulated environment is the following: At first we generate
a new random network session and permission graph in the database. Afterwards the
described modules from the Design and Implementation chapter (see Section 5.1) are
arranged appropriately in order to inject and find particular graph sub-structures again.
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The modules are arranged as follows:

1. GraphPreprocessor deletes nodes and edges that would disturb the generation of
graph-theoretic metrics

2. StructureInjector injects a predefined undesired configuration that needs to be
found afterwards

3. MetricsGenerator generates predefined metrics, e.g. Betweenness Centrality or
Closeness Centrality

4. GraphAnalyzer fetches nodes that need to get excluded from further analysis steps

5. GraphAnalyzer fetches the calculated metrics and uses them to collect statistics
or even visualize the results

Afterwards we take the output data from the graph analyzer in order to examine them.

For the real-world scenarios, the first two modules in the list are not necessary. This
is because the graph of the present case does not include sub-structures that need to
be excluded from the analysis. Obviously, the StructureInjector is not needed for
the analysis because potentially undesired configurations need to be discovered in the
real-world scenario.

The blacklists are created with the following strategy. The analysis platform is equipped
with similar blacklists for the real-world and simulated scenarios. There is a list of
default security groups that is utilized, created by Microsoft [11]. Those security groups
are needed within the AD for technical reasons and they are created automatically
when an AD network is created. For instance, this includes the DOMAIN ADMINS, the
DOMAIN USERS and the DOMAIN COMPUTERS groups. Accordingly, they consist of domain
admin users, all domain users and all domain computers as members. These groups
are excluded from the analysis sequence completely by using the priorly defined static
blacklisting mechanism. The dynamic blacklisting mechanism described in the Design
and Implementation chapter 5 is used to exclude all users that are part of the domain
admins group as well. The reason for this is that we expect high centrality scores for
domain admin users since they have typically they have an unusually large amount of
admin permissions throughout the AD network.

6.2.1 Common High-Value Targets
We fetched lists of the nodes ordered by the particular centrality metric scores in a
descending manner. Common high-value targets within AD like the domain admins
group are listed on the very top of those lists for real-world an simulated scenarios.
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This evidence shows that the centrality metrics have the potential to find high-value
targets that are not as common as the default AD groups as well.

Groups like the domain admins group are necessary in order to keep users that are able
to maintain the AD network. On the one hand, this group may get blacklisted within
our solution. The reason is that the domain admins group is rather common and it
cannot be avoided because of technical causes. On the other hand it may be interesting
to assess such security groups on a regular basis, since such groups may be beneficial
for an attacker in particular.

6.2.2 Computers with Multiple Administrators
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Figure 6.1: Undesired configuration: One computer with five admin users

This section is about the injection of computers where an unusual amount of users have
administrative privileges on. This means that one computer needs to get injected to
simulate this. Furthermore, an untypical amount of users need to get administrative
privileges onto that computer by using the admin-to relationship.

A scenario like this would be beneficial for an attacker because of two reasons. On the
one hand, an attacker would get higher profit from compromising the computer. If the
computer is compromised, the attacker has many options regarding stealing identities
because there are more admin users for this computer than usual. On the other hand,
an attacker has an unusually high amount of paths to the computer. It would be enough
to steal one identity of the admin users to enable lateral movement to the computer for
further compromising.

Figure 6.1 shows the described configuration. The mentioned computer can be seen in
the middle (orange circle). The purple circles around it depict five test users that have
administrative privileges on the computer. The blue circles depict two general groups
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(as explained in Section 6.2.1). The computer is a member of the DOMAIN COMPUTERS
group as usual in AD. The DOMAIN ADMINS group has administrative privileges on the
test computer. This relationship is typical for most AD systems as well.

In total we use a generated graph including 508 AD groups, 505 users and 511 computers.
Those nodes are connected with 2877 member-of, 506 has-session and 2289 admin-to
relationships.

Figure 6.2: Betweenness Centrality of a graph (injected one computer with five admin users)

Figure 6.2 shows the distribution of the Betweenness Centrality score. This and all
following histograms make use of 50 bins each. The underlying reasoning is that the
important parts of the histograms are the nodes with the highest scores that are far off
from accumulations at lower scores. Hence, this decision does not impair the particular
analysis results, even if there are striking accumulations on the left-hand side of a
histogram. This means that the crucial results are the outliers on the very right side
of the histogram. All histograms show the distribution with normal scaling on the top.
On the bottom a logarithmic scaling is applied to increase the recognition of the score
distribution.

In Figure 6.2 it can be seen that there is a clear accumulation of relatively low scores
between 0 and under 8000. However, the previously injected computer has a score of
3083 and therefore it is hard to use the Betweenness Centrality as an indicator in this
case.
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A possible explanation for this behavior of the Betweenness Centrality score is that
there may be multiple similar sub-structures. This would suggest that the node cannot
be discovered within the given graph because of other usual sub-structures that show
up with similar connections within the graph.

Figure 6.3: Betweenness Centrality of the graph (injected one computer with ten admin users)

Figure 6.4: Degree Centrality of a graph (injected one computer with ten admin users)
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The Degree Centrality score supports this reasoning because the test computer has a
score of seven for this metric. This is a rather usual score within the graph as well.

Figure 6.3 shows the distribution of the scores if the admin users are increased to the
amount of ten identities. For this case the usage of Betweenness Centrality seems more
useful since the score of the injected computer is now at about 7660. However, only
twelve nodes have a higher Betweenness Centrality score than this For a security team
it would be a tolerable affort to check this little amount of nodes until the discovery of
the test computer. Hence, despite the size of this graph, it is still possible to detect the
injected test computer efficiently with this amount of admin users on a single computer.

Now, we take a look at the Degree Centrality score again to check the scenario regarding
unusual structures. Figure 6.4 shows the Degree Centrality score distribution for one test
computer with ten users with administrative privileges. There is a striking accumulation
of nodes that obtain a score of up to nine. Higher scores are very seldom for this graph
compared to other bins in the histogram. As for the Betweenness Centrality it is possible
to discover the injected test computer since it has twelve neighbors in total (ten users
and two groups as explained before). In this scenario, this means that the test computer
has the highest Degree Centrality score.

In summary, the Betweenness Centrality and the Degree Centrality fit well for the given
scenario. It is possible to find undesired configurations as previously defined in this
section. One last experiment shows how the usage of both metrics at once improves
the results again. We queried the highest 1% of all scores of both metrics. Then an
intersection of both sets leads to only one last node as a result, which is the previously
defined test computer again.

This leads us to the conclusion that the Betweenness and Degree Centrality are both
well fitting metrics to uncover the described undesired configuration. Especially the
combination of both metrics leads to even better results.

Section 4.4.3 describes several behaviors of an attacker and how they may match with
centrality metrics. Hereby we describe a scenario where two of the attacker’s behaviors
apply in respect of Betweenness and Degree Centrality scores. On the one hand, the
attacker may profit from the direct neighborhood of particular nodes during lateral
movement. On the other hand, a large amount of shortest paths the attacker may use
cross the mentioned test computer. Hence, the injected configuration is beneficial for
the attacker’s lateral movement.
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During those experiments, we considered Closeness Centrality as a well-performing met-
ric as well. It turns out, that none of the nodes in Figure 6.1 nor additionally associated
test user nodes can be discovered by searching for high centrality scores.

6.2.3 Users with Extensive Administrative Privileges
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Figure 6.5: Undesired configuration: One user with admin privileges

We assume the next configuration to be undesired as it depicts an highly privileged
user. Figure 6.5 shows one user in the middle that has administrative privileges on five
computers in total (orange circles). Additionally the user is part of an usual group that
contains all AD users (DOMAIN USERS).

Figure 6.6: Betweenness Centrality of a graph (one user as admin of five computers)
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This configuration may be undesired because of two reasons. First, compromising the
user U_1 is beneficial for the attacker’s further lateral movement since there are many
possible paths to the surrounding computers. This is depicted with a single step via the
admin-to relationship to the particular machines. Second, the probability of passing U_1
during a random walk of the attacker is rather high because there are many computers
that may be used for this. If one of the surrounding computers is compromised by the

Figure 6.7: Degree Centrality of a graph (One user as admin of ten computers)

Figure 6.8: Betweenness Centrality of a graph (one user as admin of ten computers)
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attacker, he may make use of the direct neighborhood. Therefore this configuration U_1
is declared to be undesired.

Here we generate a similar graph as before with the DBCreator. It consists of 508
groups, 515 computers and 501 users in total but the user in Figure 6.5 obtains a
Betweenness Centrality score of about 5581. The histogram in Figure 6.6 shows that
this value is one of the highest scores in the entire graph. In fact, the ordered top-1%
list of all Betweenness Centrality scores shows that 49 other nodes are positioned before
the injected user. For a graph of that size it still might be appropriate to check the
first 50 nodes in that list but it looks like the injected structure is not that unusual
in the entire graph. The Degree and Closeness Centrality top lists neither provide the
particular node with a top score.

Increasing the computer count shows more positive results since this seems to be a more
unusual structure. The user now pops up even in the top-5% node list of the Degree
(Figure 6.7) as well as of the Betweenness Centrality scores (Figure 6.8). In both lists
it has a high score with a Degree Centrality of eleven and a Betweenness Centrality of
10955. Further experiments show that the structure still shows up on the eleventh place
of the Betweenness top list if the admin privileges are reduced to 7.

6.2.4 Domain Administrator’s Subgroup
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Figure 6.9: Undesired configuration: Domain administrator’s subgroup with five users

The next undesired configuration injected into random graphs can be seen in Figure
6.9. This configuration consists of a group, that belongs to the DOMAIN ADMINS group.
The problem here is that the DOMAIN ADMINS group is a functional AD group that has
administrative permissions through the entire domain. Hence, the injected group G_1
in the configuration profits from the same permissions as the functional group. That
means that each and every member of group G_1 may administer every computer within
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a typical AD network. In respect to this undesired configuration, all purple users in
Figure 6.9 are affected.

This configuration is undesired because an attacker may profit regarding his behavior
as described in Section 4.4.3. Group G_1 needs to get passed on every shortest path
between one of the members of the group and some computer in the network. Therefore
this group is a higher risk regarding lateral movement of the attacker. Furthermore
it may be enough if one user of the group gets compromised to reach full permission
on the whole network. This is a crucial threat since after that step an attacker may
compromise a high amount of other computers within the AD. One last risk is that
there are many memberships regarding group G_1. This means that the group may help
the attacker during an Identity Snowball Attack to gain higher privileges. Therefore,
the probability of many compromises is higher.

Figure 6.10: Betweenness Centrality of a graph (domain admins’ subgroup with five users)

Figure 6.10 depicts a histogram that shows the distribution of the Betweenness Central-
ity scores throughout the AD network. Especially the logarithmic scaling (histogram
below) clearly shows that there is an easy to recognize high amount of scores below
8000. The score of G_1 is about 11489. This is the node with one of the highest scores
for that centrality metric and therefore a node that is easy to discover in an automatic
manner.

As can be seen in Figure 6.9 the Degree Centrality score of the group is six. This score
is too low to stand out within the whole graph.
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Figure 6.11: Degree Centrality of a graph (domain admins’ subgroup with ten users)

Figure 6.11 shows the Degree Centrality score distribution when the undesired configu-
ration gets injected with ten users as members of the group. The score of G_1 is eleven
now. Only one node has a higher score than eleven and therefore G_1 may be detected
with low effort for this case.

As a result, it can be seen that this configuration cannot be discovered with an amount of
five users. It seems like this is still an usual configuration within the graph. Hence, e.g.
ten admin users are detected as an unusual and therefore an undesired configuration.

6.2.5 Analysis of an Existing Active Directory
As mentioned already, this thesis evaluates whether the introduced metrics would sup-
port the investigation process described in Section 4.4.1. Therefore the scanning is done
in order to collect the graph data (Step 1 of the process). This means that the existing
AD network is scanned with 3.2.1 in order to persist the users, groups and comput-
ers with the described relationships. Afterwards the previously introduced metrics are
applied in order to find configurations that may be beneficial regarding the attacker’s
behavior. Section 4.4.3 explains the behaviors we want to tackle with this strategy
utilizing the centrality metrics.

This section may give some insights into the analysis utilizing the investigation process.
We demonstrate how it may be possible to discover undesired configurations in real AD
networks that are significantly larger than the generated graphs.
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Figure 6.12: Degree Centrality distribution in a real AD network

The degree centrality distribution can be seen in Figure 6.12. The distribution regarding
random graphs clearly diverges. The reason may be that the graph bases on other
organization structures than the randomly generated graphs are based on. Referring
to one of the described attacker’s behaviors, the probability of compromising increases
for higher degrees because of more entry points to a node. In this figure, it can be

Figure 6.13: Closeness Centrality distribution in a real AD network
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seen that a large number of nodes have a low number of neighbors. Despite of this,
the histogram with the logarithmic scaling at the bottom, clearly shows that there are
nodes with more than 30000 neighbors. This seems to be very untypical for the AD
graph and therefore those nodes are required to get examined more precisely.

The next histograms in Figure 6.13 shows the distribution of the Closeness Centrality
scores. The last sections in the evaluation chapter suggest that the Closeness Centrality
is not as appropriate to find undesired configurations as other metrics. Nevertheless,
anomalies may be detected within the real AD graph. A Closeness Centrality score of
approximately 1.0 means, that such a node is connected directly to almost all nodes
within the graph. We want to emphasize this result since it affects more than 6% of the
graph, despite this is no anomaly relating to the described attacker’s behaviors. Hence,
an attacker may be closer to all nodes on average and therefore he may profit more from
those nodes than from others.

Figure 6.14: Betweenness Centrality distribution in a real AD network

The last score distribution is about the Betweenness Centrality. Figure 6.14 depicts the
belonging histograms. As the metrics before show as well, this centrality metric shows
up with an accumulation at lower scores. Still, there are some extraordinary scores as
can be seen on the right side of the lower histogram. Derived from the graph-theoretical
definition, this means that there are still nodes that lie on many shortest paths within
the graph. With regard to an attacker, this means that those nodes may have a higher
probability of getting compromised than others. Hence, this set of hosts would be worth
for close investigation.
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In summary, we can state that all introduced metrics deviate from normal distributions.
They provide insights into nodes that are outliers regarding different centrality metrics.
The hereby identified amount of nodes is too high to do further investigation in detail.
Therefore, within this thesis it is possible to take only a first look at Step 3 after the
graph-theoretical analysis. This step may contain discussions with several users, system
administrators and more stakeholders in order to find out how high centrality scores
may be avoided in the future. Nevertheless, we are able to achieve a few insights.

At first, common high-value targets need to get mentioned as described in Section
6.2.1. The security groups created by default are not blacklisted at the beginning of
the analysis. The reason is that discovering them is an indication for the operation of
the metrics. As presumed, the DOMAIN ADMINS, DOMAIN COMPUTERS, DOMAIN USERS and
other groups defined by Microsoft can be found. Thus, this result is the same as for
the generated random graphs. After excluding such groups by appending them to the
blacklists, the analysis continues with rather non-standard nodes.

One exemplary finding depicts a user that is a member of a large amount of different
groups within the AD. Those groups are not part of the default groups mentioned in
the last paragraph. A configuration like this might have different reasons that have not
been worked out until now particularly. One example may be that the user switched
positions within the organization many times or worked with other people in different
environments. This may have lead to the membership in an unusually large number
of groups. This might be an undesired configuration because a potential attacker may
profit from the user with its memberships. On the one hand, this leads to a high number
of neighbors of the user node. On the other hand, this user may be on a large number of
shortest paths. This would make sense since both Degree Centrality and Betweenness
Centrality are higher than usual for this node. The reasons for this configuration and
possible mitigation strategies, further manual investigation needs to be done in the
future.

Other exemplary findings turn out to be functional user accounts. All top lists – the
scores of Degree, Betweenness and Closeness Centrality – contain a large number of
users that are used for technical issues within the network. Such users typically obtain
unusual amounts of memberships to other nodes. On the one hand they may auto-
matically establish sessions. On the other hand they may require many permissions,
assigned via direct administrative permissions or with transitive permissions via group
memberships. This is the reason for large numbers of direct and transitive relationships
and therefore high scores regarding the mentioned metrics. We suggest to further inves-
tigate such functional accounts in order to sort out those that are no longer required.
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Furthermore there may be functional accounts, where a decreased amount of privileges
may be enough. Such further steps may be done in the future as well.

During the analysis, new analysis results are assessed as explained in the investigation
process. When a node shows up with a high metric score and it does not need to be
proposed within further iterations, it simply gets excluded by adding it to the black-
list. This is how the investigation process avoids unnecessary effort regarding multiple
assessments of the same sub-structure.

The previous sections state how undesired configurations can be detected in randomly
generated graphs. For better comparison, those undesired configurations are injected
into the real AD graph. Hereby, all injected configurations can be discovered in a
similar manner. A computer is found if an unusual amount of users have administrative
permissions for it. As for the random graphs, this configuration is found if there are ten
admin users. The same applies for a user that has administrative permissions to ten
computers. A sub-group of the DOMAIN ADMINS group is discovered if it contains five
users. All of those configurations can be detected explicitly when the top 1% percentile
lists of Betweenness Centrality and Degree Centrality get intersected.

6.3 PageRank as a Comprehensive Metric

In the chapters before, the PageRank metric is not used. The reason for this is that we
are not able to define a specific attacker’s behavior suitable for this metric. However,
there are some clues that indicate that PageRank is a comprehensive metric to discover
undesired configurations.

The PageRank is applied onto all mentioned scenarios described in this chapter. In
some experiments PageRank increases accordingly to other metrics we introduce before.
Nodes can be discovered as undesired configurations because of high metric scores. Most
of those discoveries incidentally correspond to high PageRank scores as well. Hence, it
seems that PageRank is a well-suited indicator for undesired metrics.

In some experiments it is enough if one metric increases. The PageRank instantaneously
increased accordingly. Regarding injected configurations into random graphs, there are
strong correlations between the PageRank and the Degree, Closeness and Betweenness
Centrality. Despite of that, the last three metrics hardly ever correlate with each other.
This leads to the assumption that the PageRank metric is a combination of metrics that
unites the top lists comprehensively. It may be possible to use the PageRank instead
of all other metrics in order to have a one generic metric. This method may lead to a
simplification of the overall process since only one metric would be necessary.
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One example is described in Section 6.2.2, where a computer is injected that has an
untypically large amount of admin users. Here the PageRank score of the affected com-
puter is high along with the Betweenness Centrality score. Furthermore the PageRank
even exposes a computer with only five admin users, which is not possible with any
other centrality metric. Hence, the PageRank metric may leverage the investigation
process to even expose inconspicuous undesired configurations.

There are correlations between the PageRank and other metrics regarding the real AD
network as well. Thereby, the correlations strongly affect the Degree Centrality and
Betweenness Centrality. The Closeness Centrality correlates with the PageRank as well
but less pronounced. However, the intersection of the 1% percentile top list of the
PageRank and the Closeness Centrality still consist of one node that reaches a high
score with both metrics.

6.4 Conceptualization of Undesired Configurations

The past sections clearly depict that configurations may be undesired out of a subjec-
tive view only. It depends on the particular graph and therefore it depends on the
organizational and technical structure. Specifically defined and injected configurations
show up with one parameter at least in all introduced scenarios. If we increase such
a parameter, e.g. the amount of admin users in Section 6.2.4, the configuration be-
comes undesired. How much this parameter needs to get increased depends on the AD
generated structure.

In the described scenarios, we describe how to find the injected structures. There is no
guarantee that there are no other sub-structures within the graph that may be undesired
as well. This leads to the assumption that every usage of the introduced methodology
needs to be carefully studied in order to come up with meaningful thresholds of every
score top list.

A pretty similar reasoning may be applied to the real-world evaluation in Section 6.2.5.
The investigation process always needs to get applied with the organizational scope in
mind. Therefore, the hereby described findings depend on the structure of the organi-
zation.

6.5 Comparison to Related Work

Chapter 3 refers to the Heat-ray project and the BloodHound tools as related work.
Within this section we compare them with the introduced solution of this thesis.
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6.5.1 Heat-ray
The primary goal of Heat-ray is the detection of bridges between large components of the
network session and permission graph. The authors want to cut those bridges in order to
mitigate the risk of an attacker passing them. The reasoning behind this is that cutting
them would increase the security of the whole AD network. If an attacker successfully
compromised one large component, it would not be possible to do lateral movement to
the other component. However, the second large component remains secure.

In summary, this means that Heat-ray considers one undesired configuration – bridges
between large components. The solution developed within this thesis considers them un-
desired as well. We utilize Betweenness Centrality in a similar manner than Heat-ray in
order to describe the attacker’s behavior as Heat-ray does. However, the solution within
this thesis provides additional metrics as explained in 4.4.3. Therefore our solution may
consider multiple possible behaviors of an attacker by using those metrics.

It may be possible to integrate the centrality metrics within this thesis into the Heat-ray
approach in order to refine the results. This approach may enable the Heat-ray process
to cover diverse attackers’ behavior. This would result in minor changes within the
Sparsest Cut algorithm resp. its objective function of the linear programming.

Heat-ray makes use of two methods to find important sub-structures that should be
considered to get proposed to an IT administrator. The first one is to calculate the
amount of shortest paths that pass an edge. The second one includes an approximation
algorithm in order to save performance. Within our solution those approximation are
not necessary because all metrics can be used in an appropriate period. It is still
possible to calculate the metrics through the entire graph even for organizations with
large networks. We make tests with networks including large amounts of nodes and
relationships. The developed solution is still usable interactively since the metrics still
finished within minutes on a desktop machine.

Another difference of our solution compared to Heat-ray is how the approaches deal
with unwanted proposals of the algorithm. Initially, Heat-ray does not make use of
any blacklisting methodology. After the first iteration, it suddenly uses the feedback
of some IT administrator in order to decrease the probability of proposing an edge
again. However, this does not hinder the algorithm to propose the same edge again but
the probability that this happens is rather low. Heat-ray applies a Machine Learning
algorithm in order to learn from the administrator’s feedback. This is how they use the
feedback not only for the affected edges, but for additional edges within the graph.

54



6.5 Comparison to Related Work

For simplicity, we make use of easier concepts by utilizing blacklists as explained in
Section 4.4.2. This solution works well in a similar manner than the Heat-ray approach.
The feedback can take affect on the future blacklists for further iterations. This is how
our solution avoids additional proposals of sub-structures by completely excluding them
from the analysis iterations.

A detailed comparison between Heat-ray and the hereby introduced solution is not
possible because the Heat-ray implementation is not available.

6.5.2 BloodHound
The second introduced related work in Chapter 3 is the BloodHound project. Thereby
we presented the BloodHound features within the provided tools. An analysis with the
BloodHound user interface contains manual workload for most use cases. BloodHound
is developed for manual analysis despite it is a centralized approach. This means that an
analysis with BloodHound happens at a central point, i.e. the analyzing staff may use
the AD filled graph database from a central point. The drawback here is that analysis
methods are limited. The analyzing staff needs to specify the target system they are
interested in. This ends in an high effort if one may want to analyze any number of
machines within the network.

The effort gets even higher if another parameter of the analysis are systems that may be
compromised additionally to the target system. The defensive perspective may require
an analysis of all possible systems in the role of a target system and furthermore in the
role of a compromised machine. This ends in staff analyzing every possible path within
the graph, i.e. the algorithmic complexity increases the manual effort for the user again.

An automatic analysis with BloodHound is only possible if the analysis conditions are
set very precisely. Therefore, automated analysis is restricted to a limited number of use
cases. One example may be the finding users or groups with an extraordinary amount
of admin-to relationships. Hence, this feature would reveal users with administrative
privileges for an high amount of computers.

Overall, we found that BloodHound is not able to do automated analysis that results in
proposals of particular undesired sub-structures within the graph that are independent
of the AD context. In contrast to this, the introduced solution regarding this thesis
supports security staff by automatically exposing undesired nodes within the graph.
Knowledge about the context is not necessary because the presented metrics are designed
from a more general perspective with graph-theoretic approaches. This allows us to
abstract our approach to general network session and permission graphs. Thus, our
solution covers not only AD networks as the BloodHound project does.
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Chapter 7

Future Work

This thesis provides methods to analyze network session and permission graphs that can
be expanded to cover further objectives. Those goals may lead to further improvements
of protection against lateral movement. This chapter presents ideas of how to expand
or reuse the developed approaches.

There are several possible enhancements for the designed approach. Reference should
therefore be made to Section 6.3 as correlations show that PageRank may be a well-
suited metric to identify undesired configurations. Additional steps are necessary to
ensure that PageRank is a kind of all-inclusive metric. There is some evidence that
PageRank depicts the interaction between particular characteristics that can be cap-
tured by the introduced metrics. Therefore, it is necessary to define attacker behaviors
that fit the graph-theoretic method of operation of the PageRank. This may explain
why the PageRank provides such accurate results according to other metrics.

A continuation of this thesis may also be to reuse particular evaluation results. The
introduced investigation process (see Section 4.4.1) can be used to find undesired con-
figurations in an organization. During the application of this process, the organization’s
security team may notice that similar undesired configurations pop up during the itera-
tions. Hence, they could use these similarities to build up action plans as guidelines for
future changes to the network session and permission graph. This approach may even
result in an abstract framework that supports the further maintenance of such graphs.
This can be made up of guidance for administrators for instance.

It may also be possible to design a framework for security teams that gives them the
opportunity to analyze changes within the graph. Such a framework may enable the
team to do temporal analysis of changing configurations in case of an incident. Those
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changes may be the effects of the considered attack and therefore alterations have to
be investigated afterwards. Sub-structures within the graph would alter if an attacker
was able to create or delete relationships within the graph. New edges within the graph
would affect the calculation of metrics as well. Hence, the attacker’s activities may get
detected and localized by comparing metric scores of the graph before the attack with
the graph afterwards.

Different edge weights influence the centrality metrics. Using additional information
in order to set edge weights may therefore improve the significance of metric scores.
Nodes with higher scores may be have a higher probability of being part of potential
attack paths. There are several possible sources for such edge weights, e.g. the closeness
to network gateways may be used. Different weights may also be used depending on
the security level of a system. Therefore, systems that store crucial information may
be rated differently from systems that are used for more uncritical purposes. This
approach would take additional information on the value or purpose of the affected
node into account.

Another continuation may be to use the approaches of this thesis together with op-
timization algorithms as the Heat-ray project did. Heat-ray uses only one centrality
metric as described in Section 3.1. The introduced metrics of this thesis may be used
as part of the Heat-ray algorithm in order to improve their strategy. PageRank may be
an appropriate metric since it seems to be a comprehensive metric to discover undesired
configurations.
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Chapter 8

Conclusion

This thesis presents a solution that supports security teams in decreasing the risks of
attackers’ lateral movement within AD networks. Generally speaking, the solution is
built to discover potentially undesired configurations in network session and permission
graphs.

Previous solutions that tackle similar problems have a number of drawbacks. On the one
hand software solutions are not able to prevent credential theft as deploying such tools
is not generally possible. Especially problems occur regarding large organizations since
those solutions have specific requirements that cannot be met necessarily. Maintaining
permission structures in a security-aware manner is hardly possible for large organiza-
tions as there are large numbers of stakeholders. Taking all interests into account is a
complex task and therefore this solution is particularly difficult to implement. Even the
mitigation through network traffic monitoring proves to be unsuccessful as malign and
benign network traffic is hardly distinguishable. The reason for this is that only normal
API calls are used to execute Identity Snowball Attacks. The same type of traffic is
produced by the behavior of normal users. Hence, those solutions are not applicable in
general.

We hypothesize that an analysis of a graph-based representation of network session
and permission graphs allows security teams to discover sub-structures that may be
beneficial for particular attacker behaviors. This thesis designs graph configurations that
may be beneficial for typical attacker behaviors regarding lateral movement. Therefore,
those graph configurations may be interpreted as potentially undesired as the attacker
may profit from them. We implement a graph-theoretic solution that utilizes common
centrality metrics to detect the mentioned potentially undesired configurations.
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To achieve this, we defined a novel investigation process that gets applied iteratively.
The network session and permission graph gets collected with the help of existing tools.
Then different centrality metrics are calculated for each node in the entire graph. The
resulting metric scores are analyzed with descending top lists and histograms. Sub-
structures may get excluded with blacklists to avoid results that seem to be obvious or
that are assessed already.

The developed solution is evaluated in two different ways. On the one hand, the solution
is tested with randomly generated graphs, inspired by typical organization structures.
Several undesired configurations are injected into those graphs. Afterwards the hereby
introduced solution is used to discover the injected configurations. It shows that the
implemented solution is able to discover potentially undesired configurations. On the
other hand, an existing AD graph is used to confirm the correct functioning of the
introduced solution. This assessment shows how the approach performs in a real-world
environments as well, even if this graph is significantly larger.

It turns out that Betweenness Centrality and Degree Centrality seem to be well-suited
metrics to discover the defined undesired configurations. The Closeness Centrality does
not perform as well as the others. It can be observed that another metric – the PageRank
– presents correlations regarding other metrics. Hence, the PageRank may be examined
as a promising metric in the future.

In summary, there are several advantages of the implemented solution. First, the effort
of analyzing a network session and permission graph can be kept low due to its central
nature. After the underlying information is collected and persisted as a graph, the
analysis can take place from a central location. Furthermore, the evaluation of the real-
world environment shows that the approach is scalable as the real graph is significantly
larger than the generated graphs. Despite of the very specific data sources of the
graph, no specific knowledge about the graph is necessary as the approach is based
on general graph theory. No technical or organizational context is necessary to do the
analysis. This is a major difference to the BloodHound project for instance. Hence, the
approach is generally applicable to other network session and permission graphs as well.
Additionally, in theory the introduced solution operates with any number of metrics at
the same time other than the approach by Heat-ray. Three metrics are tested, whereby
two of them are able to discover potentially undesired configurations. The Heat-ray
project is limited to one metric.
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This thesis shows how to detect potentially undesired configurations with graph-theoretic
metrics. However, there are several opportunities to strengthen the approach with fur-
ther centrality metrics. Additionally, there may be enhancements that comply with
other purposes to improve network security, especially with respect to the mitigation of
Identity Snowball Attacks.
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List of Acronyms

AD Microsoft Active Directory V, 2, 7, 9, 13, 15–17, 19, 20, 22–25, 32, 38–41, 44,
46–55, 59, 60

ATT&CK Framework to describe Adversarial Tactics, Techniques and Common Knowl-
edge after compromise 6

DC Active Directory Domain Controller 7–9, 16, 20

GPO Group Policy Object 7, 8

IDS Intrusion Detection System 2, 21

IPS Intrusion Prevention System 2, 21

LDAP Lightweight Directory Access Protocol 7, 9

OIDC Open ID Connect 6

RBAC Role-Based Access Control 20
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